\[\boxed{\mathbf{41.}}\]
\[\textbf{а)}\log_{\frac{1}{11}}\frac{1}{2x - 11} > \log_{\frac{1}{11}}\frac{1}{3x - 20}\]
\[2x - 11 > 0\]
\[2x > 11\]
\[x > 5,5.\]
\[3x - 20 > 0\]
\[3x > 20\]
\[x > \frac{20}{3}\]
\[x > 6\frac{2}{3}.\]
\[M = \left( 6\frac{2}{3}; + \infty \right).\]
\[3x - 20 < 2x - 11\]
\[x < 9.\]
\[Решение\ неравенства:\]
\[x \in \left( 6\frac{2}{3};9 \right).\]
\[Ответ:x \in \left( 6\frac{2}{3};9 \right).\]
\[\textbf{б)}\log_{11}\frac{1}{4x - 7} > \log_{11}\frac{1}{5x - 14}\]
\[4x - 7 > 0\]
\[4x > 7\]
\[x > \frac{7}{4} > 1\frac{3}{4}.\]
\[5x - 14 > 0\]
\[5x > 14\]
\[x > \frac{14}{5} > 2,8.\]
\[M = (2,8; + \infty).\]
\[5x - 14 > 4x - 7\]
\[x > 7.\]
\[Решение\ неравенства:\]
\[x \in (7; + \infty).\]
\[Ответ:x \in (7; + \infty).\]
\[\textbf{в)}\log_{\frac{1}{13}}\frac{1}{4x - 17} > \log_{\frac{1}{13}}\frac{1}{5x - 40}\]
\[4x - 17 > 0\]
\[4x > 17\]
\[x > 4\frac{1}{4}.\]
\[5x - 40 > 0\]
\[5x > 40\]
\[x > 8.\]
\[M = (8; + \infty).\]
\[5x - 40 < 4x - 17\]
\[x < 23.\]
\[Решение\ неравенства:\]
\[x \in (8;23).\]
\[Ответ:x \in (8;23).\]
\[\textbf{г)}\log_{13}\frac{1}{3x - 22} > \log_{13}\frac{1}{4x - 13}\]
\[3x - 22 > 0\]
\[3x > 22\]
\[x > 7\frac{1}{3}.\]
\[4x - 13 > 0\]
\[4x > 13\]
\[x > 3\frac{1}{4}.\]
\[M = \left( 7\frac{1}{3}; + \infty \right).\]
\[4x - 13 > 3x - 22\]
\[x > - 9.\]
\[Решение\ неравенства:\]
\[x \in \left( 7\frac{1}{3}; + \infty \right).\]
\[Ответ:x \in \left( 7\frac{1}{3}; + \infty \right).\]