\[\boxed{\mathbf{33.}}\]
\[\textbf{а)}\ 4\log_{x}3 > \log_{3}x - 3\]
\[M = (0;1) \cup (1; + \infty).\]
\[\frac{4}{\log_{3}x} > \log_{3}x - 3\]
\[4 < \log_{3}^{2}{x - 3}\log_{3}x\]
\[\log_{3}^{2}x - 3\log_{3}x - 4 > 0\]
\[\log_{3}x = t:\]
\[t^{2} - 3t - 4 > 0\]
\[t_{1} + t_{2} = 3;\ \ t_{1} \cdot t_{2} = - 4\]
\[t_{1} = - 1;\ \ \ t_{2} = 4;\]
\[(t + 1)(t - 4) > 0\]
\[t < - 1;\ \ t > 4.\]
\[0 < \log_{3}x < 1:\]
\[\log_{3}x < - 1\]
\[\log_{3}x < \log_{3}\frac{1}{3}\]
\[x < \frac{1}{3}.\]
\[0 < \log_{3}x < 4:\]
\[\log_{3}1 < \log_{3}x < \log_{3}81\]
\[1 < x < 81.\]
\[Решение\ неравенства:\]
\[x \in \left( 0;\frac{1}{3} \right) \cup (1;81).\]
\[Ответ:\ x \in \left( 0;\frac{1}{3} \right) \cup (1;81).\]
\[\textbf{б)}\ 2\log_{x}5 > \log_{5}x - 1\]
\[M = (0;1) \cup (1; + \infty).\]
\[\frac{2}{\log_{5}x} > \log_{5}x - 1\]
\[2 < \log_{5}^{2}x - \log_{5}x\]
\[\log_{5}^{2}x - \log_{5}x - 2 > 0\]
\[t = \log_{5}x:\]
\[t^{2} - t - 2 > 0\]
\[t_{1} + t_{2} = 1;\ \ t_{1} \cdot t_{2} = - 2\]
\[t_{1} = - 1;\ \ t_{2} = 2;\]
\[(t + 1)(t - 2) > 0\]
\[t < - 1;\ \ t > 2.\]
\[0 < \log_{5}x < 1:\]
\[\log_{5}x < - 1\]
\[\log_{5}x < \log_{5}\frac{1}{5}\]
\[x < \frac{1}{5}.\]
\[0 < \log_{5}x < 2\]
\[\log_{5}1 < \log_{5}x < \log_{5}25\]
\[1 < x < 5.\]
\[Решение\ неравенства:\]
\[x \in \left( 0;\frac{1}{5} \right) \cup (1;25).\]
\[Ответ:\ x \in \left( 0;\frac{1}{5} \right) \cup (1;25).\]