\[\boxed{\mathbf{31.}}\]
\[\textbf{а)}\frac{\cos x}{\text{ctgx}} + \sin x < 0\]
\[\text{ctgx} \neq 0\]
\[x \neq \pi k;\]
\[x \neq \frac{\pi}{2} + \pi k.\]
\[\sin x + \sin x < 0\]
\[2\sin x < 0\]
\[\sin x < 0\]
\[- \pi + 2\pi k < x < 2\pi k.\]
\[Решение\ неравенства:\]
\[\textbf{б)}\frac{\sin x}{\text{tgx}} + \cos x > 0\]
\[\text{tgx} \neq 0\]
\[x \neq \pi k;\]
\[x \neq \frac{\pi}{2} + \pi k.\]
\[\cos x + \cos x > 0\]
\[2\cos x > 0\]
\[\cos x > 0\]
\[- \frac{\pi}{2} + 2\pi k < x < \frac{\pi}{2} + 2\pi k.\]
\[Решение\ неравенства:\]
\[\textbf{в)}\ tgx\ ctgx > 2\sin x\]
\[\text{tgx} \neq 0;\ ctgx \neq 0\]
\[x \neq \pi k;\]
\[x \neq \frac{\pi}{2} + \pi k.\]
\[1 > 2\sin x\]
\[\sin x < \frac{1}{2}\]
\[- \frac{7\pi}{6} + 2\pi k < x < \frac{\pi}{6} + 2\pi k.\]
\[Решение\ неравенства:\]
\[Ответ:\ \]
\[\textbf{г)}\ tgx\ ctg\ x < 2\cos x\]
\[\text{tgx} \neq 0;\ ctgx \neq 0\]
\[x \neq \pi k;\]
\[x \neq \frac{\pi}{2} + \pi k.\]
\[1 < 2\cos x\]
\[\cos x > \frac{1}{2}\]
\[- \frac{\pi}{3} + 2\pi k < x < \frac{\pi}{3} + 2\pi k.\]
\[Решение\ неравенства:\]