\[\boxed{\mathbf{30.}}\]
\[\textbf{а)}\ \left( 2\sqrt{x} + 1 \right)^{2} > 5x^{2} + 4\sqrt{x} - 63\]
\[x \geq 0\]
\[M = \lbrack 0; + \infty).\]
\[4x + 4\sqrt{x} + 1 > 5x^{2} + 4\sqrt{x} - 63\]
\[5x^{2} - 4x - 64 < 0\]
\[D_{1} = 4 + 320 = 324 = 18^{2}\]
\[x_{1} = \frac{2 + 18}{5} = \frac{20}{5} = 4;\]
\[x_{2} = \frac{2 - 18}{5} = - \frac{16}{5} = - 3,2;\]
\[(x + 3,2)(x - 4) < 0\]
\[- 3,2 < x < 4.\]
\[Решение\ неравенства:\]
\[x \in \lbrack 0;4).\]
\[Ответ:\ x \in \lbrack 0;4).\]
\[\textbf{б)}\ \left( 2\sqrt{x} - 1 \right)^{2} < 2x^{2} - 4\sqrt{x} - 125\]
\[x \geq 0;\]
\[M = \lbrack 0; + \infty).\]
\[4x - 4\sqrt{x} + 1 < 2x^{2} - 4\sqrt{x} - 125\]
\[2x^{2} - 4x - 126 > 0\ \ \ |\ :2\]
\[x^{2} - 2x - 63 > 0\]
\[D_{1} = 1 + 63 = 64\]
\[x_{1} = 1 + 8 = 9;\]
\[x_{2} = 1 - 8 = - 7;\]
\[(x + 7)(x - 9) > 0\]
\[x < - 7;\ \ x > 9.\]
\[Решение\ неравенства:\]
\[x \in (9; + \infty).\]
\[Ответ:\ x \in (9; + \infty).\]
\[\textbf{в)}\ \left( 3\sqrt{x} + 2 \right)^{2} > 6x^{2} + 12\sqrt{x} - 2\]
\[x \geq 0;\]
\[M = \lbrack 0; + \infty).\]
\[9x + 12\sqrt{x} + 4 < 6x^{2} + 12\sqrt{x} - 2\]
\[6x^{2} - 9x - 6 > 0\ \ \ |\ :3\]
\[2x^{2} - 3x - 2 > 0\]
\[D = 9 + 16 = 25\]
\[x_{1} = \frac{3 + 5}{4} = 2;\]
\[x_{2} = \frac{3 - 5}{4} = - 0,5;\]
\[(x + 0,5)(x - 2) > 0\]
\[- 0,5 < x < 2.\]
\[Решение\ неравенства:\]
\[x \in \lbrack 0;2)\]
\[Ответ:\ x \in \lbrack 0;2).\]
\[\textbf{г)}\ \left( 3\sqrt{x} - 2 \right)^{2} < 4x^{2} - 12\sqrt{x} - 5\]
\[x \geq 0;\]
\[M = \lbrack 0; + \infty).\]
\[9x - 12\sqrt{x} + 4 < 4x^{2} - 12\sqrt{x} - 5\]
\[4x^{2} - 9x - 9 > 0\]
\[D = 81 + 144 = 225\]
\[x_{1} = \frac{9 + 15}{8} = 3;\]
\[x_{2} = \frac{9 - 15}{8} = - \frac{6}{8} = - \frac{3}{4} =\]
\[= - 0,75;\]
\[(x + 0,75)(x - 3) > 0\]
\[x < - 0,75;\ \ x > 3.\]
\[Решение\ неравенства:\]
\[x \in (3; + \infty).\]
\[Ответ:\ x \in (3; + \infty).\]