Решебник по алгебре 11 класс Никольский Параграф 10. Равносильность уравнений на множествах Задание 32

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 32

\[\boxed{\mathbf{32.}}\]

\[\textbf{а)}\ \sqrt{2x + 1} = 2\sqrt{x - 1} + 1\]

\[2x + 1 \geq 0\]

\[2x \geq - 1\]

\[x \geq - 0,5.\]

\[x - 1 \geq 0\]

\[x \geq 1.\]

\[M = \lbrack 1; + \infty).\]

\[\left( \sqrt{2x + 1} \right)^{2} = \left( 2\sqrt{x - 1} + 1 \right)^{2}\]

\[2x + 1 = 4(x - 1) + 4\sqrt{x - 1} + 1\]

\[2x + 1 = 4x - 4 + 1 + 4\sqrt{x - 1}\]

\[- 2x + 4 = 4\sqrt{x - 1}\]

\[2 - x = 2\sqrt{x - 1}\]

\[2 - x \geq 0\]

\[x \leq 2.\]

\[M = \lbrack 1;2\rbrack.\]

\[(2 - x)^{2} = \left( 2\sqrt{x - 1} \right)^{2}\]

\[4 - 4x + x^{2} = 4(x - 1)\]

\[x^{2} - 4x + 4 = 4x - 4\]

\[x^{2} - 8x + 8 = 0\]

\[D_{1} = 16 - 8 = 8\]

\[x_{1} = 4 + 2\sqrt{2} > 2;\]

\[x_{2} = 4 - 2\sqrt{2} > 1.\]

\[Ответ:x = 4 - 2\sqrt{2}.\]

\[\textbf{б)}\ 2\sqrt{3x + 7} = 3\sqrt{2x + 2} + 2\]

\[3x + 7 \geq 0\]

\[x \geq - \frac{7}{3}.\]

\[2x + 2 \geq 0\]

\[2x \geq - 2\]

\[x \geq - 1.\]

\[M = \lbrack - 1; + \infty).\]

\[\left( 2\sqrt{3x + 7} \right)^{2} = \left( 3\sqrt{2x + 2} + 2 \right)^{2}\]

\[4(3x + 7) =\]

\[= 9(2x + 2) + 12\sqrt{2x + 2} + 4\]

\[12x + 28 =\]

\[= 18x + 18 + 12\sqrt{2x + 2} + 4\]

\[- 6x + 6 = 12\sqrt{2x + 2}\]

\[1 - x = 2\sqrt{2x + 2}\]

\[1 - x \geq 0\]

\[x \leq 1.\]

\[M = \lbrack - 1;1\rbrack.\]

\[(1 - x)^{2} = 4(2x + 2)\]

\[x^{2} - 2x + 1 = 8x + 8\]

\[x^{2} - 10x - 7 = 0\]

\[D_{1} = 25 + 7 = 32\]

\[x_{1} = 5 + 4\sqrt{2} > 1;\]

\[x_{2} = 5 - 4\sqrt{2} > - 1.\]

\[Ответ:x = 5 - 4\sqrt{2}.\]

\[\textbf{в)}\ \sqrt{6x - 3} - 2\sqrt{x} = 1\]

\[6x - 3 \geq 0\]

\[6x \geq 3\]

\[x \geq 0,5.\]

\[x \geq 0.\]

\[M = \lbrack 0,5; + \infty).\]

\[\sqrt{6x - 3} = 2\sqrt{x} + 1\]

\[\left( \sqrt{6x - 3} \right)^{2} = \left( 2\sqrt{x} + 1 \right)^{2}\]

\[6x - 3 = 4x + 4\sqrt{x} + 1\]

\[2x - 4 = 4\sqrt{x}\]

\[x - 2 = 2\sqrt{x}\]

\[x - 2 \geq 0\]

\[x \geq 2.\]

\[M = \lbrack 2;\ + \infty).\]

\[(x - 2)^{2} = \left( 2\sqrt{x} \right)^{2}\]

\[x^{2} - 4x + 4 = 4x\]

\[x^{2} - 8x + 4 = 0\]

\[D_{1} = 16 - 4 = 12\]

\[x_{1} = 4 + 2\sqrt{3} > 2;\]

\[x_{2} = 4 - 2\sqrt{3} < 2.\]

\[Ответ:x = 4 + 2\sqrt{3}.\]

\[\textbf{г)}\ \sqrt{2x - 1} - \sqrt{x} = 1\]

\[2x - 1 \geq 0\]

\[2x \geq 1\]

\[x \geq 0,5;\]

\[x \geq 0.\]

\[M = \lbrack 0,5; + \infty).\]

\[\sqrt{2x - 1} = \sqrt{x} + 1\]

\[\left( \sqrt{2x - 1} \right)^{2} = \left( \sqrt{x} + 1 \right)^{2}\]

\[2x - 1 = x + 2\sqrt{x} + 1\]

\[x - 2 = 2\sqrt{x}\]

\[x - 2 \geq 0\]

\[x \geq 2.\]

\[M = \lbrack 2; + \infty).\]

\[(x - 2)^{2} = \left( 2\sqrt{x} \right)^{2}\]

\[x^{2} - 4x + 4 = 4x\]

\[x^{2} - 8x + 4 = 0\]

\[D_{1} = 16 - 4 = 12\]

\[x_{1} = 4 + 2\sqrt{3} > 2;\]

\[x_{2} = 4 - 2\sqrt{3} < 2.\]

\[Ответ:x = 4 + 2\sqrt{3}.\]

Скачать ответ
Есть ошибка? Сообщи нам!