\[\boxed{\mathbf{31.}}\]
\[M = \lbrack 0; + \infty).\]
\[x^{2} + x\sqrt{x} + 7x + 27\sqrt{x} + 24 =\]
\[= \left( \sqrt{x} + 3 \right)^{2}\]
\[x^{2} + x\sqrt{x} + 7x + 27\sqrt{x} + 24 =\]
\[= x\sqrt{x} + 9x + 27\sqrt{x} + 27\]
\[x^{2} - 2x - 3 = 0\]
\[D_{1} = 1 + 3 = 4\]
\[x_{1} = 1 + 2 = 3;\]
\[x_{2} = 1 - 2 = - 1 < 0.\]
\[Ответ:x = 3.\]
\[\textbf{б)}\ \sqrt[3]{x^{2} + x\sqrt{x} + 27\sqrt{x} - 37} =\]
\[= \sqrt{x} - 3\]
\[M = \lbrack 0; + \infty).\]
\[x^{2} + x\sqrt{x} + 27\sqrt{x} - 37 =\]
\[= \left( \sqrt{x} - 3 \right)^{3}\]
\[x^{2} + x\sqrt{x} + 27\sqrt{x} - 37 =\]
\[= x\sqrt{x} - 9x + 27\sqrt{x} - 27\]
\[x^{2} + 9x - 10 = 0\]
\[x_{1} + x_{2} = - 9;x_{1} \cdot x_{2} = - 10\]
\[x_{1} = - 10 < 0;\ \ \]
\[x_{2} = 1.\]
\[Ответ:x = 1.\]