\[\boxed{\mathbf{33.}}\]
\[\textbf{а)}\ \sqrt{\frac{x - 3}{x + 2}} + \sqrt{\frac{x + 2}{x - 3}} =\]
\[= \frac{7}{\sqrt{(x + 2)(x - 3)}}\]
\[(x + 2)(x - 3) > 0\]
\[M = ( - \infty;\ - 2) \cup (3; + \infty).\]
\[Ответ:x = - 3;\ \ x = 4.\]
\[\textbf{б)}\ \sqrt{\frac{x - 5}{x + 1}} + \sqrt{\frac{x + 1}{x - 5}} =\]
\[= \frac{10}{\sqrt{(x + 1)(x - 5)}}\]
\[(x + 1)(x - 5) > 0\]
\[M = ( - \infty; - 1) \cup (5; + \infty).\]
\[Ответ:x = - 7;x = 3.\]