\[\boxed{\mathbf{21}\mathbf{.}}\]
\[\textbf{а)}\ 3\cos x + 4\sin x = 0\ \ | \cdot \frac{1}{\cos x}\]
\[\cos x \neq 0;\]
\[3 + \frac{4\sin x}{\cos x} = 0\]
\[3 + 4tg\ x = 0\]
\[tgx = - \frac{3}{4}\]
\[x = - arctg\ \left( \frac{3}{4} \right) + \pi n.\]
\[Ответ:x = - arctg\ \left( \frac{3}{4} \right) + \pi n.\]
\[\textbf{б)}\ 2\sin x - \cos x = 0\ \ \ \ | \cdot \frac{1}{\cos x}\]
\[\cos x \neq 0;\]
\[\frac{2\sin x}{\cos x} - 1 = 0\]
\[2tgx = 1\]
\[tgx = \frac{1}{2}\]
\[x = arctg\ \left( \frac{1}{2} \right) + \pi n.\]
\[Ответ:x = arctg\ \left( \frac{1}{2} \right) + \pi n.\]
\[\text{co}s^{2}x \neq 0;\]
\[\frac{2sin^{2}x}{\text{co}s^{2}x} - \frac{3\sin x}{\cos x} + 1 = 0\]
\[2tg^{2}x - 3tgx + 1 = 0\]
\[tgx = t:\]
\[2t^{2} - 3t + 1 = 0\]
\[D = 9 - 8 = 1\]
\[t_{1} = \frac{3 + 1}{4} = 1;\]
\[t_{2} = \frac{3 - 1}{4} = \frac{1}{2}.\]
\[tgx = 1\]
\[x = \frac{\pi}{4} + \pi k.\]
\[tgx = \frac{1}{2}\]
\[x = arctg\ \left( \frac{1}{2} \right) + \pi n.\]
\[Ответ:x = \frac{\pi}{4} + \pi k;\]
\[x = arctg\ \left( \frac{1}{2} \right) + \pi n.\]
\[\text{co}s^{2}x \neq 0;\]
\[\frac{3sin^{2}x}{\text{co}s^{2}x} - \frac{5\sin x}{\cos x} + 2 = 0\]
\[3tg^{2}x - 5tgx + 2 = 0\]
\[tgx = t:\]
\[3t^{2} - 5t + 2 = 0\]
\[D = 25 - 24 = 1\]
\[t_{1} = \frac{5 + 1}{6} = 1;\]
\[t_{2} = \frac{5 - 1}{6} = \frac{2}{3}.\]
\[tgx = 1\]
\[x = \frac{\pi}{4} + \pi k.\]
\[tgx = \frac{2}{3}\]
\[x = arctg\ \left( \frac{2}{3} \right) + \pi n.\]
\[Ответ:\ x = \frac{\pi}{4} + \pi k;\]
\[x = arctg\ \left( \frac{2}{3} \right) + \pi n.\]