\[\boxed{\mathbf{57.}}\]
\[\textbf{а)}\ \frac{\log_{2}{(x - 3)}}{\log_{0,5}{(x + 2)}} > 0\]
\[1)\ \left\{ \begin{matrix} \log_{2}(x - 3) > 0\ \ \\ \log_{0,5}(x + 2) > 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x - 3 > 2^{0}\text{\ \ \ \ } \\ x - 3 > 0\ \ \ \ \ \ \\ x + 2 < {0,5}^{0} \\ x + 2 > 0\ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x - 3 > 1 \\ x > 3\ \ \ \ \ \ \ \ \\ x + 2 < 1 \\ x > - 2\ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x > 4\ \ \ \\ x > 3\ \ \ \\ x < - 1 \\ x > - 2 \\ \end{matrix} \right.\ \]
\[нет\ решений.\]
\[2)\ \left\{ \begin{matrix} \log_{2}(x - 3) < 0\ \ \\ \log_{0,5}(x + 2) < 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x - 3 < 2^{0}\text{\ \ \ \ } \\ x - 3 > 0\ \ \ \ \ \\ x + 2 > {0,5}^{0} \\ x + 2 > 0\ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x < 4\ \ \ \\ x > 3\ \ \ \\ x > - 1 \\ x > - 2 \\ \end{matrix}\ \right.\ \ \]
\[3 < x < 4.\]
\[Объединим\ решения:\]
\[x \in (3;4).\]
\[Ответ:3 < x < 4.\]