\[\boxed{\mathbf{53.}}\]
\[\textbf{а)}\ (1 - x)\lg{(x + 2)} < 0\]
\[1)\ \left\{ \begin{matrix} 1 - x > 0\ \ \ \ \ \ \ \\ \lg(x + 2) < 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x < 1\ \ \ \ \ \ \ \ \ \ \\ x + 2 > 0\ \ \\ x + 2 < 1^{0} \\ \end{matrix} \right.\ \ \]
\[\left\{ \begin{matrix} x < 1\ \ \ \\ x > - 2 \\ x < - 1 \\ \end{matrix} \right.\ \]
\[- 2 < x < - 1.\]
\[2)\ \left\{ \begin{matrix} 1 - x < 0\ \ \ \ \ \ \ \ \\ \lg{(x + 2) > 0} \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x > 1\ \ \ \ \ \ \ \ \ \\ x + 2 > 0\ \\ x + 2 > 1^{0} \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x > 1\ \ \ \\ x > - 2 \\ x > - 1 \\ \end{matrix} \right.\ \]
\[x > 1.\]
\[Объединим\ решения:\]
\[x \in ( - 2; - 1) \cup (1; + \infty).\]
\[Ответ:\ x \in ( - 2; - 1) \cup (1; + \infty).\]
\[\textbf{б)}\ (2 - x)\log_{0,5}{(x + 3)} > 0\]
\[1)\ \left\{ \begin{matrix} 2 - x > 0\ \ \ \ \ \ \ \ \ \ \ \ \ \\ \log_{0,5}(x + 3) > 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x < 2\ \ \ \ \ \ \ \ \ \ \ \ \ \\ x + 3 > 0\ \ \ \ \ \\ x + 3 < {0,5}^{0} \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x < 2\ \ \ \\ x > - 3 \\ x < - 2 \\ \end{matrix} \right.\ \]
\[- 3 < x < - 2.\]
\[2)\ \left\{ \begin{matrix} 2 - x < 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \log_{0,5}(x + 3) < 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x > 2\ \ \ \ \ \ \ \ \ \ \ \ \ \\ x + 3 > 0\ \ \ \ \\ x + 3 > {0,5}^{0} \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x > 2\ \ \ \\ x > - 3 \\ x > - 2 \\ \end{matrix} \right.\ \]
\[x > 2.\]
\[Объединим\ решения:\]
\[x \in ( - 3; - 2) \cup (2; + \infty).\]
\[Ответ:\ x \in ( - 3; - 2) \cup (2; + \infty).\]
\[\textbf{в)}\ (x - 3)\log_{5}{(5 - x)} < 0\]
\[1)\ \left\{ \begin{matrix} x - 3 > 0\ \ \ \ \ \ \ \ \ \ \ \\ \log_{5}(5 - x) < 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x > 3\ \ \ \ \ \ \ \ \ \ \\ 5 - x > 0\ \ \\ 5 - x < 5^{0} \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x > 3 \\ x < 5 \\ x > 4 \\ \end{matrix} \right.\ \]
\[4 < x < 5.\]
\[2)\ \left\{ \begin{matrix} x - 3 < 0\ \ \ \ \ \ \ \ \ \ \ \\ \log_{5}(5 - x) > 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x < 3\ \ \ \ \ \ \ \ \ \\ 5 - x > 0\ \ \\ 5 - x > 5^{0} \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x < 3 \\ x < 5 \\ x < 4 \\ \end{matrix} \right.\ \]
\[x < 3.\]
\[Объединим\ решения:\]
\[x \in ( - \infty;3) \cup (4;5).\]
\[Ответ:\ x \in ( - \infty;3) \cup (4;5).\]
\[\textbf{г)}\ (4 + x)\log_{0,2}{(3 - x)} > 0\]
\[1)\ \left\{ \begin{matrix} 4 + x > 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \log_{0,2}(3 - x) > 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x > - 4\ \ \ \ \ \ \ \ \ \ \\ 3 - x > 0\ \ \ \ \ \\ 3 - x < {0,2}^{0} \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x > - 4 \\ x < 3\ \ \ \ \\ x > 2\ \ \ \ \\ \end{matrix} \right.\ \]
\[2 < x < 3.\]
\[2)\ \left\{ \begin{matrix} 4 + x < 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \log_{0,2}(3 - x) < 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x < - 4\ \ \ \ \ \ \ \ \ \\ 3 - x > 0\ \ \ \ \ \\ 3 - x > {0,2}^{0} \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x < - 4 \\ x < 3\ \ \ \\ x < 2\ \ \\ \end{matrix} \right.\ \]
\[x < - 4.\]
\[Объединим\ решения:\]
\[x \in ( - \infty; - 4) \cup (2;3).\]
\[Ответ:\ x \in ( - \infty; - 4) \cup (2;3).\]