\[\left( a_{n} \right) - арифметическая\ \]
\[прогрессия:\]
\[a_{1} + a_{2} + a_{3} = 0;\]
\[a_{1} + a_{2} + a_{3} + a_{4} = 1.\]
\[1)\ a_{1} + a_{2} + a_{3} = 0\]
\[a_{1} + \left( a_{1} + d \right) + \left( a_{1} + 2d \right) = 0\]
\[3a_{1} + 3d = 0\]
\[a_{1} + d = 0\]
\[a_{1} = - d.\]
\[2)\ a_{1} + a_{2} + a_{3} + a_{4} = 1\]
\[a_{1} + \left( a_{1} + d \right) + \left( a_{1} + 2d \right) + \left( a_{1} + 3d \right) = 1\]
\[4a_{1} + 6d = 1\]
\[- 4d + 6d = 1\]
\[2d = 1\]
\[d = 0,5;\ \ \ \]
\[a_{1} = - 0,5.\]
\[3)\ S_{12} = \frac{2a_{1} + d(n - 1)}{2} \bullet n =\]
\[= \frac{2 \bullet ( - 0,5) + 0,5(12 - 1)}{2} \bullet 12 =\]
\[= ( - 1 + 6 - 0,5) \bullet 6 =\]
\[= 4,5 \bullet 6 = 27.\]
\[Ответ:\ \ 27.\]