\[\left( b_{n} \right) - геометрическая\ \]
\[прогрессия:\]
\[b_{3} - b_{2} = 9;\]
\[b_{2} - b_{4} = 18.\]
\[1)\ b_{3} - b_{2} = 9\]
\[b_{1}q^{2} - b_{1} = 9\]
\[b_{1} \bullet \left( q^{2} - 1 \right) = 9\]
\[b_{1} = \frac{9}{q^{2} - 1}.\]
\[2)\ b_{2} - b_{4} = 18\]
\[b_{1}q - b_{1}q^{3} = 18\]
\[b_{1} \bullet \left( q - q^{3} \right) = 18\]
\[b_{1} = \frac{18}{q - q^{3}}.\]
\[\frac{9}{q^{2} - 1} = \frac{18}{q - q^{3}}\]
\[9\left( q - q^{3} \right) = 18\left( q^{2} - 1 \right)\]
\[q - q^{3} = 2q^{2} - 2\]
\[q^{3} + 2q^{2} - q - 2 = 0\]
\[q^{2} \bullet (q + 2) - (q + 2) = 0\]
\[(q + 2)\left( q^{2} - 1 \right) = 0\]
\[q_{1} = - 2;\ \ \ q_{2} = \pm 1.\]
\[3)\ q = - 2:\]
\[b_{1} = \frac{9}{( - 2)^{2} - 1} = \frac{9}{4 - 1} = \frac{9}{3} = 3;\]
\[b_{2} = b_{1} \bullet q = 3 \bullet ( - 2) = - 6;\]
\[b_{3} = b_{2} \bullet q = - 6 \bullet ( - 2) = 12;\]
\[b_{4} = b_{3} \bullet q = 12 \bullet ( - 2) = - 24.\]
\[Ответ:\ \ 3;\ - 6;\ 12;\ - 24.\]