\[1)\ x^{\lg{2x} - 3\lg x + 1} > 1000\]
\[\lg x^{\lg{2x} - 3\lg x + 1} > \lg 1000\]
\[\lg x \bullet \left( \lg{2x} - 3\lg x + 1 \right) > \lg 10^{3}\]
\[\lg x \bullet \left( \lg 2 + \lg x - 3\lg x + 1 \right) > 3\]
\[y = \lg x:\]
\[y\left( \lg 2 + y - 3y + 1 \right) > 3\]
\[y \bullet \lg 2 - 2y^{2} + y > 3\]
\[2y^{2} - \left( \lg 2 + 1 \right)y + 3 < 0\]
\[D = \left( \lg 2 + 1 \right)^{2} - 4 \bullet 2 \bullet 3 =\]
\[= \lg^{2}2 + 2\lg 2 + 1 - 24 =\]
\[= \lg^{2}2 + 2\lg 2 - 23 < 0\]
\[x \in \varnothing.\]
\[Ответ:\ \ нет\ решений.\]
\[2)\ 3^{\lg x + 2} < 3^{\lg x^{2} + 5} - 2\]
\[3^{2} \bullet 3^{\lg x} < 3^{5} \bullet 3^{\lg x^{2}} - 2\]
\[9 \bullet 3^{\lg x} < 243 \bullet 3^{2\lg x} - 2\]
\[y = 3^{\lg x}:\]
\[9y < 243y^{2} - 2\]
\[243y^{2} - 9y - 2 > 0\]
\[D = 81 + 1944 = 2025\]
\[y_{1} = \frac{9 - 45}{2 \bullet 243} = - \frac{2}{27};\]
\[y_{2} = \frac{9 + 45}{2 \bullet 243} = \frac{54}{486} = \frac{1}{9};\]
\[\left( y + \frac{2}{27} \right)\left( y - \frac{1}{9} \right) > 0\]
\[y < - \frac{2}{27};\ \ \ y > \frac{1}{9}.\]
\[Подставим:\]
\[3^{\lg x} > \frac{1}{9}\]
\[3^{\lg x} > 3^{- 2}\]
\[\lg x > - 2\]
\[x > 10^{- 2}\]
\[x > 0,01.\]
\[Ответ:\ \ x \in (0,01;\ + \infty).\]