\[1)\ Основание\ логарифма:\]
\[|2x + 2| < 1\]
\[- 1 < 2x + 2 < 1\]
\[- 3 < 2x < - 1\]
\[- 1,5 < x < - 0,5.\]
\[2) - 1,5 < x < - 0,5:\]
\[1 - 9^{x} > \left( 1 + 3^{x} \right)\left( \frac{5}{9} + \frac{3^{x}}{3} \right)\]
\[1 - 3^{2x} > \frac{5}{9} + \frac{3^{x}}{3} + \frac{5}{9} \bullet 3^{x} + \frac{3^{2x}}{3}\]
\[9 - 9 \bullet 3^{2x} > 5 + 3 \bullet 3^{x} + 5 \bullet 3^{x} + 3 \bullet 3^{2x}\]
\[12 \bullet 3^{2x} + 8 \bullet 3^{x} - 4 < 0\]
\[D = 64 + 192 = 256\]
\[3_{1}^{x} = \frac{- 8 - 16}{2 \bullet 12} = - 1;\]
\[3_{2}^{x} = \frac{- 8 + 16}{2 \bullet 12} = \frac{1}{3};\]
\[\left( 3^{x} + 1 \right)\left( 3^{x} - \frac{1}{3} \right) < 0\]
\[3^{x} < \frac{1}{3}\]
\[3^{x} < 3^{- 1}\]
\[x < - 1.\]
\[3)\ x < - 1,5\ и\ x > - 0,5:\]
\[1 - 9^{x} < \left( 1 + 3^{x} \right)\left( \frac{5}{9} + \frac{3^{x}}{3} \right)\]
\[x > - 1.\]
\[4)\ Область\ определения:\]
\[1 - 9^{x} > 0\]
\[9^{x} < 1\]
\[x < 0.\]
\[|2x + 2| > 0\]
\[2x + 2 \neq 0\]
\[x \neq - 1.\]
\[Ответ:\ \ \]
\[x \in ( - 1,5;\ - 1) \cup ( - 0,5;\ 0).\]