\[x < 0:\]
\[\log_{\frac{1}{2}}\left( x^{2} + ax + 1 \right) < 1\]
\[x^{2} + ax + 1 > \frac{1}{2}\]
\[x^{2} + ax + \frac{1}{2} > 0\]
\[D = a^{2} - 4 \bullet \frac{1}{2} = a^{2} - 2.\]
\[1)\ Неравенство\ всегда\ верно:\]
\[D = a^{2} - 2 < 0\]
\[\left( a + \sqrt{2} \right)\left( a - \sqrt{2} \right) < 0\]
\[- \sqrt{2} < a < \sqrt{2}.\]
\[2)\ Нет\ отрицательного\ корня:\]
\[x = \frac{- a - \sqrt{a^{2} - 2}}{2} > 0\]
\[- a - \sqrt{a^{2} - 2} > 0\]
\[- a > \sqrt{a^{2} - 2}\]
\[a^{2} > a^{2} - 2\]
\[0a^{2} > - 2\]
\[- a > 0\]
\[a < 0.\]
\[Ответ:\ \ a < \sqrt{2}.\]