\[1)\log_{0,5}(1 + 2x) > - 1;\]
\[\log_{\frac{1}{2}}(1 + 2x) > \log_{\frac{1}{2}}\left( \frac{1}{2} \right)^{- 1}\]
\[1 + 2x < 2\]
\[2x < 1\]
\[x < \frac{1}{2}.\]
\[Область\ определения:\]
\[1 + 2x > 0\]
\[2x > - 1\]
\[x > - \frac{1}{2}.\]
\[Ответ:\ \ x \in \left( - \frac{1}{2};\ \frac{1}{2} \right).\]
\[2)\log_{3}(1 - 2x) < - 1\]
\[\log_{3}(1 - 2x) < \log_{3}3^{- 1}\]
\[1 - 2x < \frac{1}{3}\]
\[- 2x < - \frac{2}{3}\]
\[x > \frac{1}{3}.\]
\[Область\ определения:\]
\[1 - 2x > 0\]
\[- 2x > - 1\]
\[x < \frac{1}{2}.\]
\[Ответ:\ \ x \in \left( \frac{1}{3};\ \frac{1}{2} \right).\]