\[1)\ \sqrt{\lg x} < \frac{1}{2}\]
\[\lg x < \frac{1}{4}\]
\[x < 10^{\frac{1}{4}}.\]
\[Область\ определения:\]
\[\lg x \geq 0\]
\[x \geq 10^{0}\]
\[x \geq 1.\]
\[Ответ:\ \ x \in \left\lbrack 1;\ 10^{\frac{1}{4}} \right).\]
\[2)\log_{\frac{1}{2}}x < \log_{\frac{1}{2}}(2x + 6) + 2\]
\[\log_{\frac{1}{2}}x - \log_{\frac{1}{2}}(2x + 6) < 2\]
\[\log_{\frac{1}{2}}\frac{x}{2x + 6} < \log_{\frac{1}{2}}\left( \frac{1}{2} \right)^{2}\]
\[\frac{x}{2x + 6} > \frac{1}{4}\]
\[\frac{4x - (2x + 6)}{4(2x + 6)} > 0\]
\[\frac{2x - 6}{2x + 6} > 0\]
\[x < - 3;\ \ \ x > 3.\]
\[Область\ определения:\]
\[2x + 6 > 0;\ \ x > 0\]
\[x > - 3.\]
\[Ответ:\ \ x \in (3;\ + \infty).\]