\[1)\log_{0,5}\left( x^{2} - 5x + 6 \right) > - 1\]
\[\log_{\frac{1}{2}}\left( x^{2} - 5x + 6 \right) > \log_{\frac{1}{2}}\left( \frac{1}{2} \right)^{- 1}\]
\[x^{2} - 5x + 6 < 2\]
\[x^{2} - 5x + 4 < 0\]
\[D = 25 - 16 = 9\]
\[x_{1} = \frac{5 - 3}{2} = 1;\]
\[x_{2} = \frac{5 + 3}{2} = 4;\]
\[(x - 1)(x - 4) < 0\]
\[1 < x < 4.\]
\[Область\ определения:\]
\[x^{2} - 5x + 6 > 0\]
\[D = 25 - 24 = 1\]
\[x_{1} = \frac{5 - 1}{2} = 2;\]
\[x_{2} = \frac{5 + 1}{2} = 3;\]
\[(x - 2)(x - 3) > 0\]
\[x < 2;\ \ \ x > 3.\]
\[Ответ:\ \ x \in (1;\ 2) \cup (3;\ 4).\]
\[2)\log_{8}\left( x^{2} - 4x + 3 \right) \leq 1\]
\[\log_{8}\left( x^{2} - 4x + 3 \right) \leq \log_{8}8^{1}\]
\[x^{2} - 4x + 3 \leq 8\]
\[x^{2} - 4x - 5 \leq 0\]
\[D = 16 + 20 = 36\]
\[x_{1} = \frac{4 - 6}{2} = - 1;\]
\[x_{2} = \frac{4 + 6}{2} = 5;\]
\[(x + 1)(x - 5) \leq 0\]
\[- 1 \leq x \leq 5.\]
\[Область\ определения:\]
\[x^{2} - 4x + 3 > 0\]
\[D = 16 - 12 = 4\]
\[x_{1} = \frac{4 - 2}{2} = 1;\]
\[x_{2} = \frac{4 + 2}{2} = 3;\]
\[(x - 1)(x - 3) > 0\]
\[x < 1;\ \text{\ \ }x > 3.\]
\[Ответ:\ \ x \in \lbrack - 1;\ 1) \cup (3;\ 5\rbrack.\]