\[1)\ \frac{8x^{2} - 4x + 3}{4x^{2} - 2x + 1} \leq a\]
\[= \frac{2 - 8x}{\left( 4x^{2} - 2x + 1 \right)^{2}}.\]
\[Промежуток\ возрастания:\]
\[2 - 8x \geq 0\]
\[8x \leq 2\]
\[x \leq \frac{1}{4}.\]
\[Наибольшее\ значение:\]
\[y\left( \frac{1}{4} \right) = \frac{8 \bullet \frac{1}{16} - 4 \bullet \frac{1}{4} + 3}{4 \bullet \frac{1}{16} - 2 \bullet \frac{1}{4} + 1} =\]
\[= \frac{2 - 4 + 12}{1 - 2 + 4} = \frac{10}{3}.\]
\[Ответ:\ \ a \geq \frac{10}{3}.\]
\[2)\ \frac{3x^{2} - 4x + 8}{9x^{2} - 12x + 16} \geq a\]
\[= \frac{32 - 48x}{\left( 9x^{2} - 12x + 16 \right)^{2}}.\]
\[Промежуток\ возрастания:\]
\[32 - 48x \geq 0\]
\[48x \leq 32\]
\[x \leq \frac{2}{3}.\]
\[\lim_{x \rightarrow \infty}\frac{3x^{2} - 4x + 8}{9x^{2} - 12x + 16} =\]
\[= \lim_{x \rightarrow \infty}\frac{3 - \frac{4}{x} + \frac{8}{x^{2}}}{9 - \frac{12}{x} + \frac{16}{x^{2}}} = \frac{3}{9} = \frac{1}{3}.\]
\[Ответ:\ \ a \leq \frac{1}{3}.\]