\[\frac{x^{3} + x^{2} - 4x - 4}{x^{3} + 6x^{2} + 5x - 12} > 0.\]
\[1)\ x^{3} + x^{2} - 4x - 4 = 0:\]
\[1\] | \[1\] | \[- 4\] | \[- 4\] | |
---|---|---|---|---|
\[- 1\] | \[1\] | \[0\] | \[- 4\] | \[0\] |
\[- 2\] | \[1\] | \[- 2\] | \[0\] | \[-\] |
\[2)\ x^{3} + 6x^{2} + 5x - 12 = 0:\]
\[1\] | \[6\] | \[5\] | \[- 12\] | |
---|---|---|---|---|
\[1\] | \[1\] | \[7\] | \[12\] | \[0\] |
\[- 3\] | \[1\] | \[4\] | \[0\] | \[-\] |
\[3)\ \frac{(x + 2)(x + 1)(x - 2)}{(x + 4)(x + 3)(x - 1)} > 0\]
\[x < - 4;\ \ \ - 3 < x < - 2;\text{\ \ \ }\]
\[- 1 < x < 1;\ \ \ \text{\ \ \ x} > 2.\]
\[Ответ:\ \ \]