\[1)\ |2x - 3| < x\]
\[2x - 3 > - x\]
\[3x > 3\]
\[x > 1.\ \]
\[2x - 3 < x\]
\[2x - x < 3\]
\[x < 3.\]
\[Ответ:\ \ x \in (1;\ 3).\]
\[2)\ |4 - x| > x\]
\[4 - x < - x\]
\[0x > 4\]
\[x \in \varnothing.\]
\[4 - x > x\]
\[2x < 4\]
\[x < 2.\]
\[Ответ:\ \ x \in ( - \infty;\ 2).\]
\[3)\ \left| x^{2} - 7x + 12 \right| \leq 6\]
\[1)\ x^{2} - 7x + 12 \geq - 6\]
\[x^{2} - 7x + 18 \geq 0\]
\[D = 49 - 72 = - 23 < 0\]
\[x \in R.\]
\[2)\ x^{2} - 7x + 12 \leq 6\]
\[x^{2} - 7x + 6 \leq 0\]
\[D = 49 - 24 = 25\]
\[x_{1} = \frac{7 - 5}{2} = 1;\]
\[x_{2} = \frac{7 + 5}{2} = 6;\]
\[(x - 1)(x - 6) \leq 0\]
\[1 \leq x \leq 6.\]
\[Ответ:\ \ x \in \lbrack 1;\ 6\rbrack.\]
\[4)\ \left| x^{2} - 3x - 4 \right| > 6\]
\[1)\ x^{2} - 3x - 4 < - 6\]
\[x^{2} - 3x + 2 < 0\]
\[D = 9 - 8 = 1\]
\[x_{1} = \frac{3 - 1}{2} = 1;\]
\[x_{2} = \frac{3 + 1}{2} = 2;\]
\[(x - 1)(x - 2) < 0\]
\[1 < x < 2.\]
\[2)\ x^{2} - 3x - 4 > 6\]
\[x^{2} - 3x - 10 > 0\]
\[D = 9 + 40 = 49\]
\[x_{1} = \frac{3 - 7}{2} = - 2;\]
\[x_{2} = \frac{3 + 7}{2} = 5;\]
\[(x + 2)(x - 5) > 0\]
\[x < - 2;\ \text{\ \ }x > 5.\]
\[Ответ:\ \ \]
\[x \in ( - \infty;\ - 2) \cup (1;\ 2) \cup (5;\ + \infty).\]
\[5)\ \left| 2x^{2} - x - 1 \right| \geq 5\]
\[1)\ 2x^{2} - x - 1 \leq - 5\]
\[2x^{2} - x + 4 \leq 0\]
\[D = 1 - 32 = - 31 < 0\]
\[x \in \varnothing.\]
\[2)\ 2x^{2} - x - 1 \geq 5\]
\[2x^{2} - x - 6 \geq 0\]
\[D = 1 + 48 = 49\]
\[x_{1} = \frac{1 - 7}{2 \bullet 2} = - 1,5;\]
\[x_{2} = \frac{1 + 7}{2 \bullet 2} = 2;\]
\[(x + 1,5)(x - 2) \geq 0\]
\[x \leq - 1,5;\ \text{\ \ }x \geq 2.\]
\[Ответ:\ \]
\[x \in ( - \infty;\ - 1,5\rbrack \cup \lbrack 2;\ + \infty).\]
\[6)\ \left| 3x^{2} - x - 4 \right| < 2\]
\[1)\ 3x^{2} - x - 4 > - 2\]
\[3x^{2} - x - 2 > 0\]
\[D = 1 + 24 = 25\]
\[x_{1} = \frac{1 - 5}{2 \bullet 3} = - \frac{2}{3};\]
\[x_{2} = \frac{1 + 5}{2 \bullet 3} = 1;\]
\[\left( x + \frac{2}{3} \right)(x - 1) > 0\]
\[x < - \frac{2}{3};\text{\ \ }x > 1.\]
\[2)\ 3x^{2} - x - 4 < 2\]
\[3x^{2} - x - 6 < 0\]
\[D = 1 + 71 = 73\]
\[x = \frac{1 \pm \sqrt{73}}{2 \bullet 3} = \frac{1 \pm \sqrt{73}}{6};\]
\[\left( x - \frac{1 - \sqrt{73}}{6} \right)\left( x - \frac{1 + \sqrt{73}}{6} \right) < 0\]
\[\frac{1 - \sqrt{73}}{6} < x < \frac{1 + \sqrt{73}}{6}.\]
\[Ответ:\ \ \]
\[x \in \left( \frac{1 - \sqrt{73}}{6};\ - \frac{2}{3} \right) \cup \left( 1;\ \frac{1 + \sqrt{73}}{6} \right).\]