\[1)\ \frac{\cos{4a} - \cos{2a}}{\sin{3a} \bullet \sin a} =\]
\[= \frac{- 2\sin\frac{4a + 2a}{2} \bullet \sin\frac{4a - 2a}{2}}{\sin{3a} \bullet \sin a} =\]
\[= \frac{- 2\sin{3a} \bullet \sin a}{\sin{3a} \bullet \sin a} = - 2;\]
\[2)\ \frac{1 + \cos a + \cos{2a} + \cos{3a}}{\cos a + 2\cos^{2}a - 1} =\]
\[= \frac{1 + \cos{2a} + 2 \bullet \cos\frac{3a + a}{2} \bullet \cos\frac{3a - a}{2}}{\cos a + \left( 1 + \cos{2a} \right) - 1} =\]
\[= \frac{2\cos^{2}a + 2\cos{2a} \bullet \cos a}{\cos a + \cos{2a}} =\]
\[= \frac{2\cos a \bullet \left( \cos a + \cos{2a} \right)}{\cos a + \cos{2a}} =\]
\[= 2\cos a.\]