\[1)\ \frac{\cos a + \sin a}{\cos a - \sin a} - tg\left( \frac{\pi}{4} + a \right) =\]
\[= \frac{\frac{\cos a}{\cos a} + \frac{\sin a}{\cos a}}{\frac{\cos a}{\cos a} - \frac{\sin a}{\cos a}} - \frac{\text{tg}\frac{\pi}{4} + tg\ a}{1 - tg\frac{\pi}{4} \bullet tg\ a} =\]
\[= \frac{1 + tg\ a}{1 - tg\ a} - \frac{1 + tg\ a}{1 - tg\ a} =\]
\[= \frac{0}{1 - tg\ a} = 0.\]
\[2)\ tg^{2}\left( \frac{\pi}{2} - a \right) - \frac{1 - \sin{2a}}{1 + \sin{2a}} =\]
\[= \text{ct}g^{2}\ a - \frac{1 - \cos\left( \frac{\pi}{2} - 2a \right)}{1 + \cos\left( \frac{\pi}{2} - 2a \right)} =\]
\[= ctg^{2}\ a - tg^{2}\frac{\frac{\pi}{2} - 2a}{2} =\]
\[= \text{ct}g^{2}\ a - tg^{2}\left( \frac{\pi}{4} - a \right).\]