\[3^{6^{n}} - 2^{6^{n}}\ делится\ на\ 35.\]
\[1)\ n = 1:\]
\[3^{6^{1}} - 2^{6^{1}} = 729 - 64 = 665.\]
\[2)\ n = k + 1:\]
\[N = 3^{6^{n + 1}} - 2^{6^{n + 1}} = 3^{6 \bullet 6^{n}} - 2^{6 \bullet 6^{n}} =\]
\[= 729 \bullet 3^{6^{n}} - 64 \bullet 2^{6^{n}} =\]
\[= 665 \bullet 3^{6^{n}} + 64 \bullet 3^{6^{n}} - 64 \bullet 2^{6^{n}} =\]
\[= 35 \bullet 19 \bullet 3^{6^{n}} + 64\left( 3^{6^{n}} - 2^{6^{n}} \right).\]
\[Что\ и\ требовалось\ доказать.\]