Решебник по алгебре и начала математического анализа 11 класс Колягин Задание 639

Авторы:
Год:2020-2021-2022-2023
Тип:учебник

Задание 639

\[1)\cos{2a} = \cos^{2}a - \sin^{2}a\]

\[z = r\left( \cos a + i\sin a \right)\text{\ \ \ }\]

\[z = x + yi.\]

\[z^{2} = r^{2}\left( \cos{2a} + i\sin{2a} \right)\]

\[z^{2} = x^{2} + 2xyi - y^{2};\]

\[r^{2}\cos{2a} = x^{2} - y^{2}\]

\[\cos{2a} = \frac{x^{2}}{r^{2}} - \frac{y^{2}}{r^{2}} =\]

\[= \left( \frac{x}{r} \right)^{2} - \left( \frac{y}{3} \right)^{2} = \cos^{2}a - \sin^{2}a.\]

\[Что\ и\ требовалось\ доказать.\]

\[2)\sin{2a} = 2\sin a \bullet \cos a\]

\[z = r\left( \cos a + i\sin a \right)\]

\[z = x + yi;\]

\[z^{2} = r^{2}\left( \cos{2a} + i\sin{2a} \right)\ \]

\[z^{2} = x^{2} + 2xyi - y^{2};\]

\[r^{2}\sin{2a} = 2xy\]

\[\sin{2a} = \frac{2xy}{r^{2}} = 2 \bullet \frac{x}{r} \bullet \frac{y}{r} =\]

\[= 2\cos a \bullet \sin a.\]

\[Что\ и\ требовалось\ доказать.\]

\[3)\cos{3a} = 4\cos^{3}a - 3\cos a\]

\[z = r\left( \cos a + i\sin a \right)\]

\[z = x + yi;\]

\[z^{3} = r^{3}\left( \cos{3a} + i\sin{3a} \right)\]

\[z^{3} = x^{3} + 3x^{2}yi - 3xy^{2} - y^{3}i;\]

\[r^{3}\cos{3a} = x^{3} - 3xy^{2}\]

\[\cos{3a} = \frac{x^{3}}{r^{3}} - \frac{3xy^{2}}{r^{3}} =\]

\[= \left( \frac{x}{r} \right)^{3} - 3 \bullet \frac{x}{r} \bullet \left( \frac{y}{r} \right)^{2}\]

\[\cos{3a} =\]

\[= \cos^{3}a - 3\cos a \bullet \sin^{2}a =\]

\[= \cos^{3}a - 3\cos a\left( 1 - \cos^{2}a \right) =\]

\[= \cos^{3}a - 3\cos a + 3\cos^{3}a =\]

\[= 4\cos^{3}a - 3\cos a.\]

\[Что\ и\ требовалось\ доказать.\]

\[4)\sin{3a} = 3\sin a - 4\sin^{3}a\]

\[z = r\left( \cos a + i\sin a \right)\]

\[z = x + yi;\]

\[z^{3} = r^{3}\left( \cos{3a} + i\sin{3a} \right)\]

\[z^{3} = x^{3} + 3x^{2}yi - 3xy^{2} - y^{3}i;\]

\[r^{3}\sin{3a} = 3x^{2}y - y^{3}\]

\[\sin{3a} = \frac{3x^{2}y}{r^{3}} - \frac{y^{3}}{r^{3}} =\]

\[= 3 \bullet \left( \frac{x}{r} \right)^{2} \bullet \frac{y}{r} - \left( \frac{y}{r} \right)^{3} =\]

\[= 3\cos^{2}a \bullet \sin a - \sin^{3}a =\]

\[= 3\sin a\left( 1 - \sin^{2}a \right) - \sin^{3}a =\]

\[= 3\sin a - 3\sin^{3}a - \sin^{3}a =\]

\[= 3\sin a - 4\sin^{3}a.\]

\[Что\ и\ требовалось\ доказать.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам