\[1)\sin\frac{\pi}{6} + i\sin\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2}i =\]
\[= \frac{\sqrt{2}}{2}\left( \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i \right) =\]
\[= \frac{\sqrt{2}}{2}\left( \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \right).\]
\[2)\sin a + i\left( 1 - \cos a \right);0 < a < \frac{\pi}{2}:\]
\[r = \sqrt{\sin^{2}a + \left( 1 - \cos a \right)^{2}} =\]
\[= \sqrt{\sin^{2}a + 1 - 2\cos a + \cos^{2}a} =\]
\[= \sqrt{2 - 2\cos a} = \sqrt{4 \bullet \frac{1 - \cos a}{2}} =\]
\[= \sqrt{4\sin^{2}\frac{a}{2}} = 2\sin\frac{a}{2};\]
\[\cos\varphi = \frac{a}{r} = \frac{\sin a}{2\sin\frac{a}{2}} =\]
\[= \frac{2\sin\frac{a}{2} \bullet \cos\frac{a}{2}}{2\sin\frac{a}{2}} = \cos\frac{a}{2};\]
\[z = 2\sin\frac{a}{2}\left( \cos\frac{a}{2} + i\sin\frac{a}{2} \right).\]
\[3)\ (tg\ 1 - i)^{4}:\]
\[r = \sqrt{tg^{2}\ 1 + ( - 1)^{2}} =\]
\[= \sqrt{tg^{2}\ 1 + 1} = \sqrt{\frac{1}{\cos^{2}1}} = \frac{1}{\cos 1};\]
\[\cos\varphi = \frac{a}{r} = tg\ 1\ :\frac{1}{\cos 1} =\]
\[= \frac{\sin 1}{\cos 1} \bullet \cos 1 = \sin 1 =\]
\[= \cos\left( \frac{3\pi}{2} + 1 \right);\]
\[= \frac{1}{\cos^{4}1}\left( \cos 4 + i\sin 4 \right).\]
\[4)\ \frac{(1 + i)^{2n + 1}}{(1 - i)^{2n - 1}};\ \ \ n \in N:\]
\[= 2\left( \cos\frac{4\pi n}{4} + i\sin\frac{4\pi n}{4} \right) =\]
\[2\left( \cos\text{πn} + i\sin\text{πn} \right);\]
\[z_{1} = 2\left( \cos 0 + i\sin 0 \right);\ \]
\[n - четное.\]
\[z_{2} = 2\left( \cos\pi + i\sin\pi \right);\]
\[\ n - нечетное.\]