\[n - натуральное\ число:\]
\[\left( \frac{1 + i\ tg\ a}{1 - i\ tg\ a} \right)^{n} = \frac{1 + i\ tg\ a}{1 - i\ tg\ a}.\]
\[1)\ r = \sqrt{1^{2} + tg^{2}\text{\ a}} =\]
\[= \sqrt{tg^{2}\ a + 1} = \sqrt{\frac{1}{\cos^{2}a}} = \frac{1}{\cos a};\]
\[\cos\varphi = \frac{a}{r} = 1\ :\frac{1}{\cos a} = \cos a;\]
\[1 + i\ tg\ a = \frac{1}{\cos a}\left( \cos a + i\sin a \right).\]
\[2)\ 1 - i\ tg\ a = \overline{1 + i\ tg\ a} =\]
\[= \frac{1}{\cos a}\left( \cos a - i\sin a \right).\]
\[3)\ \frac{1 + i\ tg\ a}{1 - i\ tg\ a} = \frac{\cos a + i\sin a}{\cos a - i\sin a} =\]
\[= \frac{\cos a + i\sin a}{\cos( - a) + i\sin( - a)} =\]
\[= \cos(a - a) + i\sin(a - a) =\]
\[= \cos 0 + i\sin 0 = 1.\]
\[Что\ и\ требовалось\ доказать.\]