Решебник по алгебре и начала математического анализа 11 класс Колягин Задание 637

Авторы:
Год:2020-2021-2022-2023
Тип:учебник

Задание 637

\[1)\ z^{2} = 16i;\]

\[\left( r\left( \cos\varphi + i\sin\varphi \right) \right)^{2} =\]

\[= 16(0 + i \bullet 1);\]

\[r^{2}\left( \cos{2\varphi} + i\sin{2\varphi} \right) =\]

\[= 16\left( \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} \right);\]

\[r^{2} = 16,\text{\ \ }\]

\[r = \pm 4.\text{\ \ }\]

\[2\varphi = \frac{\pi}{2}\]

\[\varphi = \frac{\pi}{4}.\]

\[z = \pm 4\left( \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \right) =\]

\[= \pm \left( 2\sqrt{2} + 2\sqrt{2}i \right);\]

\[Ответ:\ \pm \left( 2\sqrt{2} + 2\sqrt{2}i \right).\]

\[2)\ z^{2} = - 4i;\]

\[\left( r\left( \cos\varphi + i\sin\varphi \right) \right)^{2} =\]

\[= 4\left( 0 + i \bullet ( - 1) \right);\]

\[r^{2}\left( \cos{2\varphi} + i\sin{2\varphi} \right) =\]

\[= 4\left( \cos\left( - \frac{\pi}{2} \right) + i\sin\left( - \frac{\pi}{2} \right) \right);\]

\[r^{2} = 4\]

\[r = \pm 2.\text{\ \ \ }\]

\[2\varphi = - \frac{\pi}{2}\]

\[\varphi = - \frac{\pi}{4}.\]

\[z = \pm 2\left( \cos\left( - \frac{\pi}{4} \right) + i\sin\left( - \frac{\pi}{4} \right) \right) =\]

\[= \pm \left( \sqrt{2} - \sqrt{2}i \right).\]

\[Ответ:\ \pm \left( \sqrt{2} - \sqrt{2}i \right).\]

\[3)\ z^{2} = 2 - 2i\sqrt{3};\]

\[\left( r\left( \cos\varphi + i\sin\varphi \right) \right)^{2} =\]

\[= 4\left( \frac{1}{2} - \frac{\sqrt{3}}{2}i \right);\]

\[r^{2}\left( \cos{2\varphi} + i\sin{2\varphi} \right) =\]

\[= 4\left( \cos\left( - \frac{\pi}{3} \right) + i\sin\left( - \frac{\pi}{3} \right) \right);\]

\[r^{2} = 4\text{\ \ \ }\]

\[r = \pm 2.\]

\[2\varphi = - \frac{\pi}{3}\text{\ \ }\]

\[\varphi = - \frac{\pi}{6}.\]

\[z = \pm 2\left( \cos\left( - \frac{\pi}{6} \right) + i\sin\left( - \frac{\pi}{6} \right) \right) =\]

\[= \pm \left( \sqrt{3} - i \right).\]

\[Ответ:\ \pm \left( \sqrt{3} - i \right).\]

\[4)\ z^{2} = - 1 - \sqrt{3}i\]

\[\left( r\left( \cos\varphi + i\sin\varphi \right) \right)^{2} =\]

\[= 2\left( - \frac{1}{2} - \frac{\sqrt{3}}{2}i \right);\]

\[r^{2}\left( \cos{2\varphi} + i\sin{2\varphi} \right) =\]

\[= 2\left( \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3} \right);\]

\[r^{2} = 2,\ \ \ 2\varphi = \frac{4\pi}{3};\]

\[r = \pm \sqrt{2},\ \ \ \varphi = \frac{2\pi}{3};\]

\[z = \pm \sqrt{2}\left( \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} \right) =\]

\[= \pm \left( - \frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{2}i \right).\]

\[Ответ:\ \pm \left( \frac{\sqrt{2}}{2} - \frac{\sqrt{6}}{2}i \right).\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам