\[1)\ |z| - iz = 1 - 2i\]
\[z = a + bi:\]
\[\sqrt{a^{2} + b^{2}} - i(a + bi) = 1 - 2i\]
\[\sqrt{a^{2} + b^{2}} - ai + b = 1 - 2i.\]
\[Мнимая\ часть:\]
\[- a = - 2\]
\[a = 2.\]
\[Действительная\ часть:\]
\[\sqrt{a^{2} + b^{2}} + b = 1\]
\[\sqrt{2^{2} + b^{2}} + b = 1\]
\[\sqrt{b^{2} + 4} = 1 - b\]
\[b^{2} + 4 = 1 - 2b + b^{2}\]
\[2b = - 3\]
\[b = - \frac{3}{2}.\]
\[Ответ:\ \ z = 2 - \frac{3}{2}\text{i.}\]
\[2)\ z^{2} + 3|z| = 0\]
\[z = a + bi:\]
\[(a + bi)^{2} + 3\sqrt{a^{2} + b^{2}} = 0\]
\[a^{2} + 2abi - b^{2} + 3\sqrt{a^{2} + b^{2}} = 0.\]
\[Мнимая\ часть:\]
\[2ab = 0\]
\[a = 0;\ \ \ b = 0.\]
\[Действительная\ часть:\]
\[a^{2} - b^{2} + 3\sqrt{a^{2} + b^{2}} = 0\]
\[0^{2} - b^{2} + 3\sqrt{0^{2} + b^{2}} = 0\]
\[3\sqrt{b^{2}} - b^{2} = 0\]
\[|b|\left( 3 - |b| \right) = 0\]
\[b_{1} = 0;\text{\ \ \ }b_{2} = \pm 3.\]
\[b = 0:\]
\[a^{2} - 0^{2} + 3\sqrt{a^{2} + 0^{2}} = 0\]
\[a^{2} + 3\sqrt{a^{2}} = 0\]
\[a = 0.\]
\[Ответ:\ \ \]
\[z_{1} = 0;\ z_{2} = - 3i;\ z_{3} = 3i.\]