\[AB = x;\ BC = y;\ AC = z:\]
\[z^{2} = x^{2} + y^{2};\]
\[y^{2} = z^{2} - x^{2}.\]
\[1)\ Прочность\ балки:\]
\[T(x) = xy^{2} = x\left( z^{2} - x^{2} \right) =\]
\[= xz^{2} - x^{3};\]
\[T^{'}(x) = z^{2} - 3x^{2}.\]
\[2)\ z^{2} - 3x^{2} \geq 0\]
\[3x^{2} \leq z^{2}\]
\[x^{2} \leq \frac{z^{2}}{3}\]
\[x \leq \frac{z}{\sqrt{3}}.\]
\[3)\ Точка\ максимума:\]
\[x = \frac{z}{\sqrt{3}};\]
\[y^{2} = z^{2} - \frac{z^{2}}{3} = \frac{2z^{2}}{3}\]
\[y = \frac{z\sqrt{2}}{\sqrt{3}}.\]
\[4)\ Проверим:\]
\[AC = R;AM = \frac{1}{3}R;\ MC = \frac{2}{3}R;\]
\[BM = \sqrt{AM \bullet BM} = \sqrt{\frac{1}{3}R \bullet \frac{2}{3}R} =\]
\[= \frac{R\sqrt{2}}{3};\]
\[AB = \sqrt{AM^{2} + BM^{2}} =\]
\[= \sqrt{\frac{1}{9}R^{2} + \frac{2}{9}R^{2}} = \frac{R\sqrt{3}}{3} = \frac{R}{\sqrt{3}};\]
\[BC = \sqrt{MC^{2} + BM^{2}} =\]
\[= \sqrt{\frac{4}{9}R^{2} + \frac{2}{9}R^{2}} = \frac{R\sqrt{6}}{3} = \frac{R\sqrt{2}}{\sqrt{3}}.\]
\[Ответ:\ \ разметка\ верна.\]