Решебник по алгебре и начала математического анализа 11 класс Колягин Задание 329

Авторы:
Год:2020-2021-2022-2023
Тип:учебник

Задание 329

\[1)\ f(x) = \frac{(x - 1)^{3}}{x^{2}};\]

\[k = \lim_{x \rightarrow \infty}\frac{f(x)}{x} = \lim_{x \rightarrow \infty}\frac{(x - 1)^{3}}{x^{3}} =\]

\[= \frac{1}{1} = 1;\]

\[b = \lim_{x \rightarrow \infty}\left( f(x) - kx \right) =\]

\[= \lim_{x \rightarrow \infty}\left( \frac{(x - 1)^{3}}{x^{2}} - x \right) =\]

\[= \lim_{x \rightarrow \infty}\frac{x^{3} - 3x^{2} + 3x - 1 - x^{3}}{x^{2}} =\]

\[= \lim_{x \rightarrow \infty}\frac{- 3x^{2} + 3x - 1}{x^{2}} =\]

\[= \frac{- 3 + 0 - 1}{1} = - 3.\]

\[Ответ:\ \ x = 0;\ y = x - 3.\]

\[2)\ f(x) = \frac{x^{4}}{x^{3} - 1};\]

\[k = \lim_{x \rightarrow \infty}\frac{f(x)}{x} = \lim_{x \rightarrow \infty}\frac{x^{4}}{x^{4} - x} =\]

\[= \frac{1}{1 - 0} = 1;\]

\[b = \lim_{x \rightarrow \infty}\left( f(x) - kx \right) =\]

\[= \lim_{x \rightarrow \infty}\left( \frac{x^{4}}{x^{3} - 1} - x \right) =\]

\[= \lim_{x \rightarrow \infty}\frac{x^{4} - x^{4} + x}{x^{3} - 1} =\]

\[= \lim_{x \rightarrow \infty}\frac{x}{x^{3} - 1} = \frac{0}{1 - 0} = 0.\]

\[Ответ:\ \ x = 1;\ y = x.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам