\[a - боковая\ сторона;\ \]
\[b - основание\ равноб.\ \mathrm{\Delta}:\]
\[a + a + b = p\]
\[b = p - 2a.\]
\[1)\ Высота:\]
\[h = \sqrt{{a^{2} - \left( \frac{b}{2} \right)}^{2}} =\]
\[= \sqrt{a^{2} - \frac{(p - 2a)^{2}}{4}} =\]
\[= \sqrt{a^{2} - \frac{p^{2} - 4ap + 4a^{2}}{4}} =\]
\[= \frac{\sqrt{4ap - p^{2}}}{2}.\]
\[2)\ S(a) = \frac{1}{2}bh =\]
\[= \frac{1}{2}(p - 2a) \bullet \frac{\sqrt{4ap - p^{2}}}{2};\]
\[= \frac{2p^{2} - 6ap}{2\sqrt{4ap - p^{2}}} = \frac{p^{2} - 3ap}{\sqrt{4ap - p^{2}}}.\]
\[3)\ p^{2} - 3ap \geq 0\]
\[p(p - 3a) \geq 0\]
\[p - 3a \geq 0\]
\[3a \leq p\]
\[a \leq \frac{p}{3}.\]
\[4)\ Точка\ максимума:\]
\[a = \frac{p}{3};\]
\[b = p - \frac{2p}{3} = \frac{p}{3}.\]
\[Ответ:\ \ равносторонний\ \mathrm{\Delta}\ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }со\ стороной\ \frac{p}{3}.\]