\[a - боковая\ сторона;\]
\[b - основание\ впис.\ \mathrm{\Delta};\ \]
\[R - радиус\ круга;\]
\[\varphi - угол\ при\ основании.\]
\[1)\ По\ теореме\ синусов:\]
\[\frac{a}{\sin\varphi} = \frac{a}{\sin\varphi} = \frac{b}{\sin(180{^\circ} - 2\varphi)}\text{\ \ \ }\]
\[R = \frac{a}{2\sin\varphi};\]
\[\frac{a}{\sin\varphi} = \frac{b}{\sin{2\varphi}} = 2R\]
\[a = 2R\sin\varphi;\]
\[b = 2R\sin{2\varphi}.\]
\[2)\ P(\varphi) = a + a + b = 2a + b =\]
\[= 4R\sin\varphi + 2R\sin{2\varphi};\]
\[P^{'}(\varphi) = 4R\cos\varphi + 2R \bullet 2\cos{2\varphi} =\]
\[= 4R\left( \cos\varphi + \cos{2\varphi} \right).\]
\[3)\ \cos\varphi + \cos{2\varphi} \geq 0\]
\[\cos\varphi + 2\cos^{2}\varphi - 1 \geq 0\]
\[D = 1 + 8 = 9\]
\[\cos\varphi_{1} = \frac{- 1 - 3}{2 \bullet 2} = - 1;\ \]
\[\cos\varphi_{2} = \frac{- 1 + 3}{2 \bullet 2} = \frac{1}{2};\]
\[\varphi_{1} = \pi + 2\pi n;\]
\[\varphi_{2} = \pm \frac{\pi}{3} + 2\pi n.\]
\[4)\ Точка\ максимума:\]
\[0 \leq \varphi \leq \frac{\pi}{2};\]
\[\varphi = \frac{\pi}{3} = 60{^\circ};\]
\[180{^\circ} - 2\varphi = 60{^\circ}.\]
\[Что\ и\ требовалось\ доказать.\]