\[1)\ f(x) = x^{3} - 6x^{2} + 9;\ \lbrack - 2;\ 2\rbrack:\]
\[f^{'}(x) = 3x^{2} - 6 \bullet 2x + 0 =\]
\[= 3x^{2} - 12x.\]
\[3x^{2} - 12x = 0\]
\[3x(x - 4) = 0\]
\[x_{1} = 0;\text{\ \ \ }x_{2} = 4.\]
\[f( - 2) = - 8 - 24 + 9 = - 23;\]
\[f(0) = 0 - 0 + 9 = 9;\]
\[f(2) = 8 - 24 + 9 = - 7.\]
\[Ответ:\ - 23;\ 9.\]
\[2)\ f(x) = x^{3} + 6x^{2} + 9x;\ \lbrack - 4;\ 0\rbrack:\]
\[f^{'}(x) = 3x^{2} + 6 \bullet 2x + 9 =\]
\[= 3x^{2} + 12x + 9.\]
\[3x^{2} + 12x + 9 = 0\]
\[x^{2} + 4x + 3 = 0\]
\[D = 16 - 12 = 4\]
\[x_{1} = \frac{- 4 - 2}{2} = - 3;\]
\[x_{2} = \frac{- 4 + 2}{2} = - 1.\]
\[f( - 4) = - 64 + 96 - 36 = - 4;\]
\[f( - 3) = - 27 + 54 - 27 = 0;\]
\[f( - 1) = - 1 + 6 - 9 = - 4;\]
\[f(0) = 0 + 0 + 0 = 0.\]
\[Ответ:\ - 4;\ 0.\]
\[3)\ f(x) = x^{4} - 2x^{2} + 3;\lbrack - 4;\ 3\rbrack:\]
\[f^{'}(x) = 4x^{3} - 2 \bullet 2x + 0 =\]
\[= 4x^{3} - 4x.\]
\[4x^{3} - 4x = 0\]
\[4x\left( x^{2} - 1 \right) = 0\]
\[x_{1} = 0;\text{\ \ \ }x_{2} = \pm 1.\]
\[f( - 4) = 256 - 32 + 3 = 227;\]
\[f( \pm 1) = 1 - 2 + 3 = 2;\]
\[f(0) = 0 - 0 + 3 = 3;\]
\[f(3) = 81 - 18 + 3 = 66.\]
\[Ответ:\ \ 2;\ 227.\]
\[4)\ f(x) = x^{4} - 8x^{2} + 5;\ \lbrack - 3;\ 2\rbrack:\]
\[f^{'}(x) = 4x^{3} - 8 \bullet 2x + 0 =\]
\[= 4x^{3} - 16x.\]
\[4x^{3} - 16x = 0\]
\[4x\left( x^{2} - 4 \right) = 0\]
\[x_{1} = 0;\text{\ \ \ }x_{2} = \pm 2.\]
\[f( - 3) = 81 - 72 + 5 = 14;\]
\[f( \pm 2) = 16 - 32 + 5 = - 11;\]
\[f(0) = 0 - 0 + 5 = 5.\]
\[Ответ:\ - 11;\ 14.\]