\[1)\ y = 3x^{2} - 6x + 5;\ \lbrack 0;\ 3\rbrack:\]
\[y^{'} = 3 \bullet 2x - 6 + 0 = 6x - 6;\]
\[y^{''} = 6 - 0 = 6 > 0.\]
\[Промежуток\ возрастания:\]
\[6x - 6 \geq 0\]
\[6x \geq 6\]
\[x \geq 1.\]
\[2)\ y = \frac{1}{4}x^{4} - \frac{2}{3}x^{3};\ \lbrack - 1;\ 3\rbrack:\]
\[y^{'} = \frac{1}{4} \bullet 4x^{3} - \frac{2}{3} \bullet 3x^{2} = x^{3} - 2x^{2};\]
\[y^{''} = 3x^{2} - 2 \bullet 2x = 3x^{2} - 4x.\]
\[Промежуток\ возрастания:\]
\[x^{3} - 2x^{2} \geq 0\]
\[x^{2}(x - 2) \geq 0\]
\[x \geq 2;\text{\ \ \ x} = 0.\]
\[Выпукла\ вниз:\]
\[3x^{2} - 4x \geq 0\]
\[x(3x - 4) \geq 0\]
\[x \leq 0;\ \ \ x \geq 1\frac{1}{3}.\]