\[1)\ y = x^{3} - x^{2} - x + 1;\]
\[y^{'} = 3x^{2} - 2x - 1 + 0 =\]
\[= 3x^{2} - 2x - 1;\]
\[y^{''} = 3 \bullet 2x - 2 - 0 = 6x - 2.\]
\[Промежуток\ возрастания:\]
\[3x^{2} - 2x - 1 \geq 0\]
\[D = 4 + 12 = 16\]
\[x_{1} = \frac{2 - 4}{2 \bullet 3} = - \frac{1}{3};\text{\ \ }\]
\[x_{2} = \frac{2 + 4}{2 \bullet 3} = 1;\]
\[\left( x + \frac{1}{3} \right)(x - 1) \geq 0\]
\[x \leq - \frac{1}{3};\text{\ \ x} \geq 1.\]
\[Выпукла\ вниз:\]
\[6x - 2 \geq 0\]
\[6x \geq 2\]
\[x \geq \frac{1}{3}.\]
\[2)\ y = x^{3} - x^{2} + x - 1;\]
\[y^{'} = 3x^{2} - 2x + 1 - 0 =\]
\[= 3x^{2} - 2x + 1;\]
\[y^{''} = 3 \bullet 2x - 2 + 0 = 6x - 2.\]
\[Промежуток\ возрастания:\]
\[3x^{2} - 2x + 1 \geq 0\]
\[D = 4 - 12 = - 8 < 0\]
\[x \in R.\]
\[Выпукла\ вниз:\]
\[6x - 2 \geq 0\]
\[6x \geq 2\]
\[x \geq \frac{1}{3}.\]