\[1)\ y = (x + 3)\sqrt{x};\]
\[y^{'} = \sqrt{x} + \frac{x + 3}{2\sqrt{x}} = \frac{2x + x + 3}{2\sqrt{x}} =\]
\[= \frac{3x + 3}{2\sqrt{x}};\]
\[y^{''} = \frac{3 \bullet 2\sqrt{x} - (3x + 3) \bullet \frac{1}{\sqrt{x}}}{\left( 2\sqrt{x} \right)^{2}} =\]
\[= \frac{6x - 3x - 3}{4x \bullet \sqrt{x}} = \frac{3x - 3}{4x\sqrt{x}}.\]
\[Промежуток\ возрастания:\]
\[3x + 3 \geq 0\]
\[3x \geq - 3\]
\[x \geq - 1.\]
\[Выпукла\ вниз:\]
\[\frac{3x - 3}{x} \geq 0\]
\[x < 0;\ \ \ x \geq 1;\]
\[x \geq 0.\]
\[2)\ y = \frac{(x + 1)^{3}}{x^{2}};\]
\[y^{'} =\]
\[= \frac{3(x + 1)^{2} \bullet x^{2} - (x + 1)^{3} \bullet 2x}{x^{4}} =\]
\[= \frac{(x + 1)^{2}\left( 3x^{2} - 2x^{2} - 2x \right)}{x^{4}} =\]
\[= \frac{(x + 1)^{2}(x^{2} - 2x)}{x^{4}};\]
\[= \frac{6x^{2} + 6x}{x^{5}} = \frac{6x(x + 1)}{x^{5}} =\]
\[= \frac{6(x + 1)}{x^{4}}.\]
\[Промежуток\ возрастания:\]
\[x^{2} - 2x \geq 0\]
\[x(x - 2) \geq 0\]
\[x \leq 0;\text{\ \ \ x} \geq 2.\]
\[Выпукла\ вниз:\]
\[x + 1 \geq 0\]
\[x \geq - 1;\]
\[x \neq 0.\]
\[\lim_{x \rightarrow \infty}\frac{f(x)}{x} = \lim_{x \rightarrow \infty}\frac{(x + 1)^{3}}{x^{3}} = \frac{1}{1} = 1;\]
\[\lim_{x \rightarrow \infty}\left( f(x) - kx \right) =\]
\[= \lim_{x \rightarrow \infty}\left( \frac{(x + 1)^{3}}{x^{2}} - x \right);\]
\[\lim_{x \rightarrow \infty}\left( f(x) - kx \right) =\]
\[= \lim_{x \rightarrow \infty}\frac{x^{3} + 3x^{2} + 3x + 1 - x^{3}}{x^{2}} = 3;\]
\[\lim_{x \rightarrow \infty}\left( f(x) - kx \right) =\]
\[= \lim_{x \rightarrow \infty}\frac{3x^{2} + 3x + 1}{x^{2}} =\]
\[= \frac{3 + 0 + 0}{1} = 3;\]
\[x = 0;\ \ \ y = x + 3.\]
\[3)\ y = x^{2} \bullet \ln x;\]
\[y^{'} = 2x \bullet \ln x + x^{2} \bullet \frac{1}{x} =\]
\[= 2x \bullet \ln x + x;\]
\[y^{''} = 2 \bullet \ln x + 2x \bullet \frac{1}{x} + 1 =\]
\[= 2\ln x + 3;\]
\[Промежуток\ возрастания:\]
\[2x \bullet \ln x + x \geq 0\]
\[2\ln x + 1 \geq 0\]
\[\ln x \geq - \frac{1}{2}\]
\[x \geq e^{- \frac{1}{2}}.\]
\[Выпукла\ вниз:\]
\[2\ln x + 3 \geq 0\]
\[\ln x \geq - \frac{3}{2}\]
\[x \geq e^{- \frac{3}{2}};\]
\[x > 0.\]
\[4)\ y = \frac{x^{2}}{(x + 2)^{3}};\]
\[y^{'} = \frac{2x(x + 2)^{3} - x^{2} \bullet 3(x + 2)^{2}}{(x + 2)^{6}} =\]
\[= \frac{(x + 2)^{2}\left( 2x^{2} + 4x - 3x^{2} \right)}{(x + 2)^{6}} =\]
\[= \frac{4x - x^{2}}{(x + 2)^{4}};\]
\[= \frac{(x + 2)^{3}\left( 8 - 2x^{2} - 16x + 4x^{2} \right)}{(x + 2)^{8}} =\]
\[= \frac{2x^{2} - 16x + 8}{(x + 2)^{5}} = \frac{x^{2} - 8x + 4}{(x + 2)^{5}}.\]
\[Промежуток\ возрастания:\]
\[4x - x^{2} \geq 0\]
\[x(x - 4) \leq 0\]
\[0 \leq x \leq 4.\]
\[Выпукла\ вниз:\]
\[\frac{x^{2} - 8x + 4}{x + 2} \geq 0\]
\[D = 64 - 16 = 48\]
\[x = \frac{8 \pm \sqrt{48}}{2} = \frac{8 \pm 4\sqrt{3}}{2} =\]
\[= 4 \pm 2\sqrt{3};\]
\[- 2 < x \leq 4 - 2\sqrt{3};\text{\ \ }\]
\[x \geq 4 + 2\sqrt{3};\]
\[x \neq - 2.\]
\[\lim_{x \rightarrow \infty}{f(x)} = \lim_{x \rightarrow \infty}\frac{x^{2}}{(x + 2)^{3}} = \frac{0}{1} = 0;\]
\[x = - 2;\text{\ \ \ y} = 0.\]