\[1)\ f(x) = \cos x;\ - \pi < x < \pi:\]
\[f^{'}(x) = - \sin x;\]
\[f^{''}(x) = - \cos x.\]
\[- \cos x = 0\]
\[\cos x = 0\]
\[x = \frac{\pi}{2} + \pi n.\]
\[Ответ:\ - \frac{\pi}{2};\ \frac{\pi}{2}.\]
\[2)\ f(x) = x^{5} - 80x^{2};\]
\[f^{'}(x) = 5x^{4} - 80 \bullet 2x =\]
\[= 5x^{4} - 160x;\]
\[f^{''}(x) = 5 \bullet 4x^{3} - 160 =\]
\[= 20x^{3} - 160.\]
\[20x^{3} - 160 = 0\]
\[20x^{3} = 160\]
\[x^{3} = 8\]
\[x = 2.\]
\[Ответ:\ \ 2.\]
\[3)\ f(x) = x^{3} - 2x^{2} + x;\]
\[f^{'}(x) = 3x^{2} - 2 \bullet 2x + 1 =\]
\[= 3x^{2} - 4x + 1;\]
\[f^{''}(x) = 3 \bullet 2x - 4 + 0 =\]
\[= 6x - 4.\]
\[6x - 4 = 0\]
\[6x = 4\]
\[x = \frac{2}{3}.\]
\[Ответ:\ \ \frac{2}{3}.\]
\[4)\ f(x) = \sin x - \frac{1}{4}\sin{2x};\]
\[- \pi < x < \pi:\]
\[f^{'}(x) = \cos x - \frac{1}{4} \bullet 2\cos{2x} =\]
\[= \cos x - \frac{1}{2}\cos{2x};\]
\[f^{''}(x) = - \sin x + \frac{1}{2} \bullet 2\sin{2x} =\]
\[= \sin{2x} - \sin x.\]
\[\sin{2x} - \sin x = 0\]
\[2\sin x \bullet \cos x - \sin x = 0\]
\[2\sin x \bullet \left( 2\cos x - 1 \right) = 0\]
\[\sin x = 0\text{\ \ }\]
\[x = \pi n.\text{\ \ }\]
\[\cos x = \frac{1}{2}\]
\[x = \pm \frac{\pi}{3} + 2\pi n.\]
\[Ответ:\ - \frac{\pi}{3};\ 0;\ \frac{\pi}{3}.\]