\[1)\ f(x) = \left( x^{2} - 3x + 2 \right)e^{x};\]
\[f^{'}(x) =\]
\[= (2x - 3) \bullet e^{x} + \left( x^{2} - 3x + 2 \right) \bullet e^{x} =\]
\[= e^{x} \bullet \left( x^{2} - x - 1 \right);\]
\[f^{''}(x) =\]
\[= e^{x} \bullet \left( x^{2} - x - 1 \right) + e^{x} \bullet (2x - 1) =\]
\[= e^{x} \bullet \left( x^{2} + x - 2 \right);\]
\[Выпукла\ вниз:\]
\[x^{2} + x - 2 \geq 0\]
\[D = 1 + 8 = 9\]
\[x_{1} = \frac{- 1 - 3}{2} = - 2;\text{\ \ }\]
\[x_{2} = \frac{- 1 + 3}{2} = 1;\]
\[(x + 2)(x - 1) \geq 0\]
\[x \leq - 2;\text{\ \ \ x} \geq 1.\]
\[Ответ:\ \ \]
\[выпукла\ вверх\ на\ \lbrack - 2;\ 1\rbrack;\]
\[выпукла\ вниз\ \]
\[на\ ( - \infty;\ - 2\rbrack \cup \lbrack 1;\ + \infty).\]
\[2)\ f(x) = x^{3} - 6x \bullet \ln x;\]
\[f^{'}(x) = 3x^{2} - \left( 6 \bullet \ln x + 6x \bullet \frac{1}{x} \right) =\]
\[= 3x^{2} - 6\ln x - 6.\]
\[f^{''}(x) = 3 \bullet 2x - 6 \bullet \frac{1}{x} - 0 =\]
\[= \frac{6x^{2} - 6}{x}.\]
\[Выпукла\ вниз:\]
\[\frac{6x^{2} - 6}{x} \geq 0\]
\[\frac{6(x + 1)(x - 1)}{x} \geq 0\]
\[- 1 \leq x < 0;\text{\ \ \ x} \geq 1.\]
\[Ответ:\ \ \]
\[выпукла\ вверх\ на\ (0;\ 1\rbrack;\]
\[выпукла\ вниз\ на\ \lbrack 1;\ + \infty).\]