\[1)\ e^{3x} - 3x\ на\ ( - 1;\ 1):\]
\[y^{'} = 3e^{3x} - 3.\]
\[Промежуток\ возрастания:\]
\[3e^{3x} - 3 \geq 0\]
\[3e^{3x} \geq 3\]
\[e^{3x} \geq 1\]
\[3x \geq 0\]
\[x \geq 0.\]
\[y(0) = 1 - 3 \bullet 0 = 1.\]
\[Ответ:\ \ 1.\]
\[2)\ \frac{1}{x} + \ln x\ на\ (0;\ 2):\]
\[y^{'} = - \frac{1}{x^{2}} + \frac{1}{x} = \frac{x - 1}{x^{2}}.\]
\[Промежуток\ возрастания:\]
\[x - 1 \geq 0\]
\[x \geq 1.\]
\[y(1) = 1 + 0 = 1.\]
\[Ответ:\ \ 1.\]