Решебник по алгебре и начала математического анализа 11 класс Колягин Задание 294

Авторы:
Год:2020-2021-2022-2023
Тип:учебник

Задание 294

\[1)\ \sqrt[3]{x^{2}(1 - x)}\ на\ (0;\ 1):\]

\[y = \sqrt[3]{x^{2} - x^{3}} = \left( x^{2} - x^{3} \right)^{\frac{1}{3}};\]

\[y^{'} = \frac{1}{3}\left( x^{2} - x^{3} \right)^{- \frac{2}{3}} \bullet \left( 2x - 3x^{2} \right) =\]

\[= \frac{2x - 3x^{2}}{3\sqrt[3]{\left( x^{2} - x^{3} \right)^{2}}}.\]

\[Промежуток\ возрастания:\]

\[2x - 3x^{2} \geq 0\]

\[3x^{2} - 2x \leq 0\]

\[x(3x - 2) \leq 0\]

\[0 \leq x \leq \frac{2}{3}.\]

\[y\left( \frac{2}{3} \right) = \sqrt[3]{\frac{4}{9} \bullet \frac{1}{3}} = \frac{\sqrt[3]{4}}{3}.\]

\[Ответ:\ \ \frac{\sqrt[3]{4}}{3}.\]

\[2)\ \sqrt{x(2 - x)}\ на\ (0;\ 2):\]

\[y = \sqrt{2x - x^{2}};\]

\[y^{'} = \frac{2 - 2x}{2\sqrt{2x - x^{2}}} = \frac{1 - x}{\sqrt{2x - x^{2}}}.\]

\[Промежуток\ возрастания:\]

\[1 - x \geq 0\]

\[x \leq 1.\]

\[y(1) = \sqrt{2 - 1} = 1.\]

\(Ответ:\ \ 1.\)

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам