\[\text{a\ }и\ b - искомые\ числа:\]
\[a \bullet b = 625;\ a > 0;\ \ b > 0;\]
\[b = \frac{625}{a}.\]
\[1)\ S(a) = a^{2} + b^{2} = a^{2} + \frac{625^{2}}{a^{2}};\]
\[S^{'}(a) = 2a + 625^{2} \bullet \left( - \frac{2}{a^{3}} \right) =\]
\[= 2a - \frac{2 \bullet 625^{2}}{a^{3}} = \frac{2a^{4} - 2 \bullet 625^{2}}{a^{3}}.\]
\[2)\ 2a^{4} - 2 \bullet 625^{2} \geq 0\]
\[a^{4} - 625^{2} \geq 0\]
\[\left( a^{2} + 625 \right)\left( a^{2} - 625 \right) \geq 0\]
\[(a + 25)(a - 25) \geq 0\]
\[a \leq - 25;\text{\ \ \ a} \geq 25.\]
\[3)\ a = 25;\]
\[{b = \frac{625}{25} = 25. }{Ответ:\ \ 625 = 25 \bullet 25.}\]