\[1)\ y = \frac{|x|}{1 + x^{2}}\]
\[x \geq 0:\]
\[y = \frac{x}{x^{2} + 1};\]
\[y^{'} = \frac{x^{'} \bullet \left( x^{2} + 1 \right) - x \bullet \left( x^{2} + 1 \right)^{'}}{\left( x^{2} + 1 \right)^{2}} =\]
\[= \frac{\left( x^{2} + 1 \right) - x \bullet 2x}{\left( x^{2} + 1 \right)^{2}} =\]
\[= \frac{x^{2} + 1 - 2x^{2}}{\left( x^{2} + 1 \right)^{2}} = \frac{1 - x^{2}}{\left( x^{2} + 1 \right)^{2}}.\]
\[x \leq 0:\]
\[y = - \frac{x}{x^{2} + 1};\]
\[y^{'} = \frac{x^{2} - 1}{\left( x^{2} + 1 \right)^{2}}.\]
\[Критические\ точки:\]
\[x^{2} - 1 = 0\]
\[x^{2} = 1\]
\[x = \pm 1.\]
\[Ответ:\ \ \]
\[x_{1} = - 1;\ x_{2} = 0;\ x_{3} = 1.\]
\[2)\ y = x^{3} - |x - 1|\]
\[x \geq 1:\]
\[y = x^{3} - (x - 1);\]
\[y^{'} = 3x^{2} - 1.\]
\[x \leq 1:\]
\[y = x^{3} + (x - 1);\]
\[y' = 3x^{2} + 1.\]
\[Критические\ точки:\]
\[3x^{2} - 1 = 0\]
\[3x^{2} = 1\]
\[x^{2} = \frac{1}{3}\]
\[x = \pm \frac{1}{\sqrt{3}}.\]
\[Ответ:\ \ x = 1.\]
\[3)\ y = 2x^{2} - \left| x^{2} - 1 \right|\]
\[|x| \geq 1:\]
\[y = 2x^{2} - \left( x^{2} - 1 \right) = x^{2} + 1;\]
\[y^{'} = 2x + 0 = 2x.\]
\[|x| \leq 1:\]
\[y = 2x^{2} + \left( x^{2} - 1 \right) = 3x^{2} - 1;\]
\[y^{'} = 3 \bullet 2x - 0 = 6x.\]
\[Критические\ точки:\]
\[2x = 0\ \ \ \]
\[6x = 0\]
\[x = 0.\]
\[Ответ:\ \ \]
\[x_{1} = - 1;\ x_{2} = 0;\ x_{3} = 1.\]
\[4)\ y = 3x + \left| 3x - x^{2} \right|\]
\[0 \leq x \leq 3:\]
\[y = 3x + \left( 3x - x^{2} \right) = 6x - x^{2};\]
\[y^{'} = 6 - 2x.\]
\[x \leq 0;\text{\ x} \geq 3:\]
\[y = 3x - \left( 3x - x^{2} \right) = x^{2};\]
\[y^{'} = 2x.\]
\[Критические\ точки:\]
\[6 - 2x = 0\]
\[x = 3.\]
\[2x = 0\]
\[x = 0.\]
\[Ответ:\ \ x_{1} = 0;\ x_{2} = 3.\]