\[1)\ y = x^{2} - 6x + 5;\]
\[y^{'} = 2x - 6 + 0 = 2x - 6.\]
\[2x - 6 = 0\]
\[2x = 6\]
\[x = 3.\]
\[Ответ:\ \ x = 3.\]
\[2)\ y = x^{2} - 14x + 15;\]
\[y^{'} = 2x - 14 + 0 = 2x - 14.\]
\[2x - 14 = 0\]
\[2x = 14\]
\[x = 7.\]
\[Ответ:\ \ x = 7.\]
\[3)\ y = \frac{x}{2} + \frac{8}{x};\]
\[y^{'} = \frac{1}{2} + 8 \bullet \left( - \frac{1}{x^{2}} \right) = \frac{1}{2} - \frac{8}{x^{2}}.\]
\[\frac{1}{2} - \frac{8}{x^{2}} = 0\]
\[\frac{8}{x^{2}} = \frac{1}{2}\]
\[x^{2} = 16\]
\[x = \pm 4.\]
\[Ответ:\ \ x_{1} = - 4;\ x_{2} = 4.\]
\[4)\ y = \frac{x}{3} + \frac{12}{x};\]
\[y^{'} = \frac{1}{3} + 12 \bullet \left( - \frac{1}{x^{2}} \right) = \frac{1}{3} - \frac{12}{x^{2}}.\]
\[\frac{1}{3} - \frac{12}{x^{2}} = 0\]
\[\frac{12}{x^{2}} = \frac{1}{3}\]
\[x^{2} = 36\]
\[x = \pm 6.\]
\[Ответ:\ \ x_{1} = - 6;\ x_{2} = 6.\]
\[5)\ y = 2x^{3} - 15x^{2} + 36x;\]
\[y^{'} = 2 \bullet 3x^{2} - 15 \bullet 2x + 36 =\]
\[= 6x^{2} - 30x + 36.\]
\[6x^{2} - 30x + 36 = 0\]
\[x^{2} - 5x + 6 = 0\]
\[D = 25 - 24 = 1\]
\[x_{1} = \frac{5 - 1}{2} = 2;\ \]
\[x_{2} = \frac{5 + 1}{2} = 3.\]
\[Ответ:\ \ x_{1} = 2;\ x_{2} = 3.\]
\[6)\ y = e^{2x} - 2e^{x};\]
\[y^{'} = 2e^{2x} - 2e^{x}.\]
\[2e^{2x} - 2e^{x} = 0\]
\[2e^{2x} = 2e^{x}\]
\[e^{x} = 1\]
\[x = 0.\]
\[Ответ:\ \ x = 0.\]
\[7)\ y = \sin x - \cos x;\]
\[y^{'} = \cos x + \sin x.\]
\[\cos x + \sin x = 0\ \ \ \ \ |\ :\cos x\]
\[1 + tg\ x = 0\]
\[\text{tg\ x} = - 1\]
\[x = - \frac{\pi}{4} + \pi n.\]
\[Ответ:\ \ x = - \frac{\pi}{4} + \pi n.\]
\[8)\ y = \cos{2x} + 2\cos x;\]
\[y^{'} = - 2\sin{2x} - 2\sin x.\]
\[- 2\sin{2x} - 2\sin x = 0\]
\[- 4\sin x \bullet \cos x - 2\sin x = 0\]
\[- 2\sin x\left( 2\cos x + 1 \right) = 0.\]
\[\textbf{а)}\ \sin x = 0\]
\[x = \pi n.\]
\[\textbf{б)}\ 2\cos x + 1 = 0\]
\[\cos x = - \frac{1}{2}\]
\[x = \pm \frac{2\pi}{3} + 2\pi n.\]
\[Ответ:\ \ x_{1} = \pi n;\ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }x_{2} = \pm \frac{2\pi}{3} + 2\pi n.\]