\[x > 0.\]
\[1)\ln(1 + x) < x\]
\[\ln(1 + x) - x < 0.\]
\[y^{'} = \frac{1}{1 + x} - 1 = \frac{1 - (1 + x)}{x + 1} =\]
\[= - \frac{x}{x + 1}.\]
\[- \frac{x}{x + 1} \leq 0\]
\[\frac{x}{x + 1} \geq 0\]
\[x < - 1;\ \ \ x \geq 0.\]
\[\ln(1 + 0) - 0 = 0.\]
\[Что\ и\ требовалось\ доказать.\]
\[2)\ln(1 + x) > \frac{x}{x + 1}\]
\[\ln(1 + x) - \frac{x}{x + 1} > 0.\]
\[y^{'} =\]
\[= \frac{1}{1 + x} - \frac{x^{'} \bullet (x + 1) - x \bullet (x + 1)^{'}}{(x + 1)^{2}} =\]
\[= \frac{1}{x + 1} - \frac{x + 1 - x}{(x + 1)^{2}} =\]
\[= \frac{x + 1}{(x + 1)^{2}} - \frac{1}{(x + 1)^{2}} =\]
\[= \frac{x}{(x + 1)^{2}}.\]
\[x \geq 0.\]
\[\ln(1 + 0) - \frac{0}{0 + 1} = 0.\]
\[Что\ и\ требовалось\ доказать.\]