\[y = \sqrt{6 + x - x^{2}}.\]
\[1)\ y^{'} =\]
\[= \frac{1}{2\sqrt{6 + x - x^{2}}} \bullet (0 + 1 - 2x) =\]
\[= \frac{1 - 2x}{2\sqrt{6 + x - x^{2}}}.\]
\[2)\ Промежуток\ возрастания:\]
\[1 - 2x \geq 0\]
\[2x \leq 1\]
\[x \leq \frac{1}{2}.\]
\[3)\ 6 + x - x^{2} \geq 0\]
\[x^{2} - x - 6 \leq 0\]
\[D = 1 + 24 = 25\]
\[x_{1} = \frac{1 - 5}{2} = - 2;\]
\[x_{2} = \frac{1 + 5}{2} = 3;\]
\[(x + 2)(x - 3) \leq 0\]
\[- 2 \leq x \leq 3.\]
\[Что\ и\ требовалось\ доказать.\]