\[f(x) = \frac{1 + \sin{2x}}{1 - \sin{2x}};\]
\[= \frac{4\cos{2x}}{\left( 1 - \sin{2x} \right)^{2}};\]
\[f^{'}(0) = \frac{4\cos(2 \bullet 0)}{\left( 1 - \sin(2 \bullet 0) \right)^{2}} =\]
\[= \frac{4\cos 0}{\left( 1 - \sin 0 \right)^{2}} = \frac{4 \bullet 1}{(1 - 0)^{2}} =\]
\[= \frac{4}{1^{2}} = 4;\]
\[f^{'}\left( \frac{\pi}{6} \right) = \frac{4\cos\frac{2\pi}{6}}{\left( 1 - \sin\frac{2\pi}{6} \right)^{2}} =\]
\[= \frac{4\cos\frac{\pi}{3}}{\left( 1 - \sin\frac{\pi}{3} \right)^{2}} = \frac{4 \bullet \frac{1}{2}}{\left( 1 - \frac{\sqrt{3}}{2} \right)^{2}} =\]
\[= \frac{2}{\left( \frac{2 - \sqrt{3}}{2} \right)^{2}} = \frac{8}{\left( 2 - \sqrt{3} \right)^{2}} =\]
\[= \frac{8}{4 - 4\sqrt{3} + 3} = \frac{8}{7 - 4\sqrt{3}} =\]
\[= \frac{8\left( 7 + 4\sqrt{3} \right)}{49 - 48} = 8\left( 7 + 4\sqrt{3} \right).\]