\[f^{'}(2).\]
\[1)\ f(x) = e^{3 - 2x} \bullet x^{2};\]
\[f^{'}(x) = \left( e^{3 - 2x} \right)^{'} \bullet x^{2} + e^{3 - 2x} \bullet \left( x^{2} \right)^{'} =\]
\[= - 2e^{3 - 2x} \bullet x^{2} + e^{3 - 2x} \bullet 2x =\]
\[= 2xe^{3 - 2x} \bullet (1 - x);\]
\[f^{'}(2) = 2 \bullet 2 \bullet e^{3 - 2 \bullet 2} \bullet (1 - 2) =\]
\[= 4e^{- 1} \bullet ( - 1) = - \frac{4}{e}.\]
\[Ответ:\ \ f^{'}(2) < 0.\]
\[2)\ f(x) = \frac{x^{2}}{e^{1 - x}};\]
\[f^{'}(x) = \frac{\left( x^{2} \right)^{'} \bullet e^{1 - x} - x^{2} \bullet \left( e^{1 - x} \right)^{'}}{\left( e^{1 - x} \right)^{2}} =\]
\[= \frac{2x \bullet e^{1 - x} - x^{2} \bullet \left( - e^{1 - x} \right)}{\left( e^{1 - x} \right)^{2}} =\]
\[= \frac{2x + x^{2}}{e^{1 - x}};\]
\[f^{'}(2) = \frac{2 \bullet 2 + 2^{2}}{e^{1 - 2}} = \frac{4 + 4}{e^{- 1}} = 8e.\]
\[Ответ:\ \ f^{'}(2) > 0.\]