\[f(x) = (x - 1)(x - 2)(x - 3);\]
\[f(x) = \left( x^{2} - 2x - x + 2 \right)(x - 3) =\]
\[= \left( x^{2} - 3x + 2 \right)(x - 3) =\]
\[= x^{3} - 3x^{2} - 3x^{2} + 9x + 2x - 6 =\]
\[= x^{3} - 6x^{2} + 11x - 6;\]
\[f^{'}(x) = 3x^{2} - 6 \bullet 2x + 11 =\]
\[= 3x^{2} - 12x + 11;\]
\[3x^{2} - 12x + 11 = - 1\]
\[3x^{2} - 12x + 12 = 0\]
\[x^{2} - 4x + 4 = 0\]
\[(x - 2)^{2} = 0\]
\[x = 2.\]
\[Ответ:\ \ 2.\]