\[f(x) = - x^{3} + ax^{2} + bx + c;\]
\[1)\ Точки\ \text{A\ }и\ \text{B\ }лежат\ на\ \]
\[расстоянии\ \text{l\ }от\ x = 2:\]
\[A\left( 2 - l;\ f(2 - l) \right);\]
\[B\left( 2 + l;\ f(2 + l) \right).\]
\[2)\ f^{'}(x) =\]
\[= - \left( x^{3} \right)^{'} + a\left( x^{2} \right)^{'} + (bx + c)^{'} =\]
\[= - 3x^{2} + 2ax + b.\]
\[3)\ Касательные\ в\ точках\ \]
\[\text{A\ }и\ \text{B\ }параллельны:\]
\[- 3(2 - l)^{2} + 2a(2 - l) + b =\]
\[= - 3(2 + l)^{2} + 2a(2 + l) + b\]
\[- 3\left( 4 - 4l + l^{2} \right) + 4a - 2al =\]
\[= - 3\left( 4 + 4l + l^{2} \right) + 4a + 2al\]
\[- 12 + 12l - 3l^{2} - 2al =\]
\[= - 12 - 12l - 3l^{2} + 2al\]
\[12l + 12l - 2al - 2al = 0\]
\[24l - 4al = 0\]
\[6l - al = 0\]
\[6 - a = 0\]
\[a = 6.\]
\[4)\ Уравнение\ касательной\ \]
\[в\ точке\ t:\]
\[f^{'}(t) = - 3t^{2} + 12t + b;\]
\[f(t) = - t^{3} + 6t^{2} + bt + c;\]
\[5)\ В\ точке\ с\ x = 0:\]
\[= c + 2t^{3} - 6t^{2}.\]
\[6)\ Касательная\ проходит\ \]
\[через\ точку\ (0;\ 2):\]
\[2 = c + 2(2 - l)^{3} - 6(2 - l)^{2}\]
\[c - 2l^{3} + 6l^{2} - 10 = 0\]
\[c = 2l^{3} - 6l^{2} + 10.\]
\[7)\ Касательная\ проходит\ \]
\[через\ точку\ (0;\ 6):\]
\[6 = c + 2(2 + l)^{3} - 6(2 + l)^{2}\]
\[c + 2l^{3} + 6l^{2} - 14 = 0\]
\[c = - 2l^{3} - 6l^{2} + 14.\]
\[8)\ 2l^{3} - 6l^{2} + 10 = - 2l^{3} - 6l^{2} + 14\]
\[4l^{3} = 4\]
\[l^{3} = 1\]
\[l = 1;\]
\[c = 2 - 6 + 10 = 6.\]
\[9)\ Точка\ A:\]
\[2 - l = 2 - 1 = 1;\]
\[f(1) = - 1 + 6 + b + 6 = b + 11.\]
\[10)\ Точка\ B:\]
\[2 + l = 2 + 1 = 3;\]
\[f(3) = - 27 + 54 + 3b + 6 =\]
\[= 3b + 33.\]
\[11)\ Ординаты\ точек\ равны:\]
\[b + 11 = 3b + 33\]
\[- 2b = 22\]
\[b = - 11.\ \]
\[Ответ:\ \ a = 6;\ b = - 11;\ c = 6.\]